Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Emerging perovskite monolayers

Abstract

The library of two-dimensional (2D) materials has been enriched over recent years with novel crystal architectures endowed with diverse exciting functionalities. Bulk perovskites, including metal-halide and oxide systems, provide access to a myriad of properties through molecular engineering. Their tunable electronic structure offers remarkable features from long carrier-diffusion lengths and high absorption coefficients in metal-halide perovskites to high-temperature superconductivity, magnetoresistance and ferroelectricity in oxide perovskites. Emboldened by the 2D materials research, perovskites down to the monolayer limit have recently emerged. Like other 2D species, perovskites with reduced dimensionality are expected to exhibit new physics and to herald next-generation multifunctional devices. In this Review, we critically assess the preliminary studies on the synthetic routes and inherent properties of monolayer perovskite materials. We also discuss how to exploit them for widespread applications and provide an outlook on the challenges and opportunities that lie ahead for this enticing class of 2D materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Perovskite types.
Fig. 2: Perovskite types and perovskite monolayer synthesis methods.
Fig. 3: Thickness-dependent optical and electronic properties in halide perovskites.

panels adapted with permission from: a,c,d, ref. 53, AAAS; b, ref. 52, National Academy of Sciences (right y axis); b, ref. 56, under a Creative Commons license CC BY 4.0 (left y axis); e,f, ref. 19, Springer Nature Ltd.

Fig. 4: Interfacial properties of oxide perovskites.

panels adapted with permission from: a, ref. 64, AAAS; b, ref. 65, under a Creative Commons license CC BY 4.0; c, ref. 89, AAAS; d, ref. 71, Springer Nature Ltd; e, ref. 90, Springer Nature Ltd; f, ref. 69, Springer Nature Ltd.

Fig. 5: Potential applications for perovskite monolayers.
Fig. 6: The formation of interlayer excitons.

References

  1. 1.

    Fiori, G. et al. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9, 768–779 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    Sun, C., Alonso, J. A. & Bian, J. Recent advances in perovskite-type oxides for energy conversion and storage applications. Adv. Energy Mater. 11, 2000459 (2021).

    CAS  Article  Google Scholar 

  4. 4.

    Jeon, N. J. et al. Compositional engineering of perovskite materials for high-performance solar cells. Nature 517, 476–480 (2015).

    CAS  Article  Google Scholar 

  5. 5.

    Tsai, H. et al. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536, 312–316 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Brenner, T. M., Egger, D. A., Kronik, L., Hodes, G. & Cahen, D. Hybrid organic–inorganic perovskites: low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1, 15007 (2016).

    CAS  Article  Google Scholar 

  8. 8.

    Xing, G. et al. Long-range balanced electron- and hole-transport lengths in organic–inorganic CH3NH3PbI3. Science 342, 344–347 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    De Wolf, S. et al. Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J. Phys. Chem. Lett. 5, 1035–1039 (2014).

    Article  CAS  Google Scholar 

  10. 10.

    Saliba, M., Correa-Baena, J.-P., Grätzel, M., Hagfeldt, A. & Abate, A. Perovskite solar cells: from the atomic level to film quality and device performance. Angew. Chem. Int. Ed. 57, 2554–2569 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    Stoumpos, C. C. et al. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28, 2852–2867 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Mao, L. et al. Hybrid Dion–Jacobson 2D lead iodide perovskites. J. Am. Chem. Soc. 140, 3775–3783 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Leng, K., Fu, W., Liu, Y., Chhowalla, M. & Loh, K. P. From bulk to molecularly thin hybrid perovskites. Nat. Rev. Mater. 5, 482–500 (2020).

    CAS  Article  Google Scholar 

  14. 14.

    Shi, E. et al. Two-dimensional halide perovskite nanomaterials and heterostructures. Chem. Soc. Rev. 47, 6046–6072 (2018).

    CAS  Article  Google Scholar 

  15. 15.

    Qi, X. et al. Photonics and optoelectronics of 2D metal-halide perovskites. Small 14, 1800682 (2018).

    Article  CAS  Google Scholar 

  16. 16.

    Mao, L., Stoumpos, C. C. & Kanatzidis, M. G. Two-dimensional hybrid halide perovskites: principles and promises. J. Am. Chem. Soc. 141, 1171–1190 (2019).

    CAS  Article  Google Scholar 

  17. 17.

    Zhai, Y. et al. Giant Rashba splitting in 2D organic–inorganic halide perovskites measured by transient spectroscopies. Sci. Adv. 3, e1700704 (2017).

    Article  CAS  Google Scholar 

  18. 18.

    Manchon, A., Koo, H. C., Nitta, J., Frolov, S. M. & Duine, R. A. New perspectives for Rashba spin–orbit coupling. Nat. Mater. 14, 871–882 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Leng, K. et al. Molecularly thin two-dimensional hybrid perovskites with tunable optoelectronic properties due to reversible surface relaxation. Nat. Mater. 17, 908–914 (2018).

    CAS  Article  Google Scholar 

  20. 20.

    Wang, Y. et al. Chemical vapor deposition growth of single-crystalline cesium lead halide microplatelets and heterostructures for optoelectronic applications. Nano Res. 10, 1223–1233 (2017).

    CAS  Article  Google Scholar 

  21. 21.

    Li, L. et al. Two-step growth of 2D organic–inorganic perovskite microplates and arrays for functional optoelectronics. J. Phys. Chem. Lett. 9, 4532–4538 (2018).

    CAS  Article  Google Scholar 

  22. 22.

    Ji, D. et al. Freestanding crystalline oxide perovskites down to the monolayer limit. Nature 570, 87–90 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Hong, S. S. et al. Two-dimensional limit of crystalline order in perovskite membrane films. Sci. Adv. 3, eaao5173 (2017).

    Article  CAS  Google Scholar 

  24. 24.

    Li, S., Zhang, Y., Yang, W., Liu, H. & Fang, X. 2D perovskite Sr2Nb3O10 for high-performance UV photodetectors. Adv. Mater. 32, 1905443 (2020).

    CAS  Article  Google Scholar 

  25. 25.

    Willett, R. D. Crystal structure of (NH4)2CuCl4. J. Chem. Phys. 41, 2243–2244 (1964).

    CAS  Article  Google Scholar 

  26. 26.

    Bednorz, J. G. & Müller, K. A. Possible high Tc superconductivity in the Ba−La−Cu−O system. Physica B 64, 189–193 (1986).

    CAS  Google Scholar 

  27. 27.

    Dolzhenko, Y. I., Inabe, T. & Maruyama, Y. In situ X-ray observation on the intercalation of weak interaction molecules into perovskite-type layered crystals (C9H19NH3)2PbI4 and (C10H21NH3)2CdCl4. Bull. Chem. Soc. Jpn 59, 563–567 (1986).

    CAS  Article  Google Scholar 

  28. 28.

    Mitzi, D. B., Feild, C. A., Harrison, W. T. A. & Guloy, A. M. Conducting tin halides with a layered organic-based perovskite structure. Nature 369, 467–469 (1994).

    CAS  Article  Google Scholar 

  29. 29.

    Schaak, R. E. & Mallouk, T. E. Perovskites by design: a toolbox of solid-state reactions. Chem. Mater. 14, 1455–1471 (2002).

    CAS  Article  Google Scholar 

  30. 30.

    Chen, Y. et al. 2D Ruddlesden–Popper perovskites for optoelectronics. Adv. Mater. 30, 1703487 (2018).

    Article  CAS  Google Scholar 

  31. 31.

    Huang, Y. et al. Universal mechanical exfoliation of large-area 2D crystals. Nat. Commun. 11, 2453 (2020).

    CAS  Article  Google Scholar 

  32. 32.

    Niu, W., Eiden, A., Prakash, G. V. & Baumberg, J. J. Exfoliation of self-assembled 2D organic–inorganic perovskite semiconductors. Appl. Phys. Lett. 104, 171111 (2014).

    Article  CAS  Google Scholar 

  33. 33.

    Yaffe, O. et al. Excitons in ultrathin organic–inorganic perovskite crystals. Phys. Rev. B 92, 045414 (2015).

    Article  CAS  Google Scholar 

  34. 34.

    Li, D. et al. Graphene-sensitized perovskite oxide monolayer nanosheets for efficient photocatalytic reaction. Adv. Funct. Mater. 28, 1806284 (2018).

    Article  CAS  Google Scholar 

  35. 35.

    Dou, L. et al. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349, 1518–1521 (2015).

    CAS  Article  Google Scholar 

  36. 36.

    Gao, Y. et al. Molecular engineering of organic–inorganic hybrid perovskites quantum wells. Nat. Chem. 11, 1151–1157 (2019).

    CAS  Article  Google Scholar 

  37. 37.

    Shi, E. et al. Two-dimensional halide perovskite lateral epitaxial heterostructures. Nature 580, 614–620 (2020).

    CAS  Article  Google Scholar 

  38. 38.

    Weidman, M. C., Seitz, M., Stranks, S. D. & Tisdale, W. A. Highly tunable colloidal perovskite nanoplatelets through variable cation, metal, and halide composition. ACS Nano 10, 7830–7839 (2016).

    CAS  Article  Google Scholar 

  39. 39.

    Bekenstein, Y., Koscher, B. A., Eaton, S. W., Yang, P. & Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 137, 16008–16011 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    Akkerman, Q. A. et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 138, 1010–1016 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Liu, J. et al. Two-dimensional CH3NH3PbI3 perovskite: synthesis and optoelectronic application. ACS Nano 10, 3536–3542 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    Lu, D. et al. Synthesis of freestanding single-crystal perovskite films and heterostructures by etching of sacrificial water-soluble layers. Nat. Mater. 15, 1255–1260 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Wang, Y. et al. High-temperature ionic epitaxy of halide perovskite thin film and the hidden carrier dynamics. Adv. Mater. 29, 1702643 (2017).

    Article  CAS  Google Scholar 

  44. 44.

    Kowarik, S., Gerlach, A. & Schreiber, F. Organic molecular beam deposition: fundamentals, growth dynamics, andin situstudies. J. Phys. Condens. Matter 20, 184005 (2008).

    Article  CAS  Google Scholar 

  45. 45.

    Song, J. et al. Monolayer and few-layer all-inorganic perovskites as a new family of two-dimensional semiconductors for printable optoelectronic devices. Adv. Mater. 28, 4861–4869 (2016).

    CAS  Article  Google Scholar 

  46. 46.

    Yang, Z. et al. Engineering the exciton dissociation in quantum-confined 2D CsPbBr3 nanosheet films. Adv. Funct. Mater. 28, 1705908 (2018).

    Article  CAS  Google Scholar 

  47. 47.

    Chen, Y. Z. et al. A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3. Nat. Commun. 4, 1371 (2013).

    CAS  Article  Google Scholar 

  48. 48.

    Ning, C.-Z., Dou, L. & Yang, P. Bandgap engineering in semiconductor alloy nanomaterials with widely tunable compositions. Nat. Rev. Mater. 2, 17070 (2017).

    CAS  Article  Google Scholar 

  49. 49.

    Iqbal, A., Sun, Z., Wang, G. & Hu, J. Optimizing band gap of inorganic halide perovskites by donor–acceptor pair codoping. Inorg. Chem. 59, 6053–6059 (2020).

    CAS  Article  Google Scholar 

  50. 50.

    Ou, Q. et al. Band structure engineering in metal halide perovskite nanostructures for optoelectronic applications. Nano Mater. Sci. 1, 268–287 (2019).

    Article  Google Scholar 

  51. 51.

    Ou, Q. et al. Strong depletion in hybrid perovskite p–n junctions induced by local electronic doping. Adv. Mater. 30, 1705792 (2018).

    Article  CAS  Google Scholar 

  52. 52.

    Soe, C. M. M. et al. Structural and thermodynamic limits of layer thickness in 2D halide perovskites. Proc. Natl Acad. Sci. USA 116, 58–66 (2019).

    Article  CAS  Google Scholar 

  53. 53.

    Blancon, J.-C. et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1292 (2017).

    CAS  Article  Google Scholar 

  54. 54.

    Muljarov, E. A., Tikhodeev, S. G., Gippius, N. A. & Ishihara, T. Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds. Phys. Rev. B 51, 14370–14378 (1995).

    CAS  Article  Google Scholar 

  55. 55.

    Ishihara, T., Takahashi, J. & Goto, T. Exciton state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4. Solid State Commun. 69, 933–936 (1989).

    CAS  Article  Google Scholar 

  56. 56.

    Blancon, J. C. et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun. 9, 2254 (2018).

    Article  CAS  Google Scholar 

  57. 57.

    Ding, Y.-F. et al. Strong thickness-dependent quantum confinement in all-inorganic perovskite Cs2PbI4 with a Ruddlesden–Popper structure. J. Mater. Chem. C 7, 7433–7441 (2019).

    CAS  Article  Google Scholar 

  58. 58.

    Hanamura, E., Nagaosa, N., Kumagai, M. & Takagahara, T. Quantum wells with enhanced exciton effects and optical non-linearity. Mater. Sci. Eng. B 1, 255–258 (1988).

    Article  Google Scholar 

  59. 59.

    Even, J., Pedesseau, L. & Katan, C. Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites. ChemPhysChem 15, 3733–3741 (2014).

    CAS  Article  Google Scholar 

  60. 60.

    Abdelwahab, I. et al. Highly enhanced third-harmonic generation in 2D perovskites at excitonic resonances. ACS Nano 12, 644–650 (2018).

    CAS  Article  Google Scholar 

  61. 61.

    Ugeda, M. M. et al. Giant bandgap renormalization and excitonic effects in a monolayer transition metal dichalcogenide semiconductor. Nat. Mater. 13, 1091–1095 (2014).

    CAS  Article  Google Scholar 

  62. 62.

    Chen, J. et al. A ternary solvent method for large-sized two-dimensional perovskites. Angew. Chem. Int. Ed. 56, 2390–2394 (2017).

    CAS  Article  Google Scholar 

  63. 63.

    Pandey, M., Jacobsen, K. W. & Thygesen, K. S. Band gap tuning and defect tolerance of atomically thin two-dimensional organic–inorganic halide perovskites. J. Phys. Chem. Lett. 7, 4346–4352 (2016).

    CAS  Article  Google Scholar 

  64. 64.

    Wang, J. et al. Response to comment on ‘Epitaxial BiFeO3 multiferroic thin film heterostructures’. Science 307, 1203–1203 (2005).

    Article  Google Scholar 

  65. 65.

    Sando, D. et al. Large elasto-optic effect and reversible electrochromism in multiferroic BiFeO3. Nat. Commun. 7, 10718 (2016).

    CAS  Article  Google Scholar 

  66. 66.

    Mannhart, J. & Schlom, D. G. Oxide interfaces—an opportunity for electronics. Science 327, 1607–1611 (2010).

    CAS  Article  Google Scholar 

  67. 67.

    Varignon, J., Vila, L., Barthélémy, A. & Bibes, M. A new spin for oxide interfaces. Nat. Phys. 14, 322–325 (2018).

    CAS  Article  Google Scholar 

  68. 68.

    Santander-Syro, A. F. et al. Giant spin splitting of the two-dimensional electron gas at the surface of SrTiO3. Nat. Mater. 13, 1085–1090 (2014).

    CAS  Article  Google Scholar 

  69. 69.

    Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 (2016).

    Article  CAS  Google Scholar 

  70. 70.

    Şahin, C., Vignale, G. & Flatté, M. E. Derivation of effective spin–orbit Hamiltonians andspin lifetimes with application to SrTiO3 heterostructures. Phys. Rev. B 89, 155402 (2014).

    Article  CAS  Google Scholar 

  71. 71.

    Vaz, D. C. et al. Mapping spin–charge conversion to the band structure in a topological oxide two-dimensional electron gas. Nat. Mater. 18, 1187–1193 (2019).

    CAS  Article  Google Scholar 

  72. 72.

    da Silveira, L. G. D., Barone, P. & Picozzi, S. Rashba–Dresselhaus spin-splitting in the bulk ferroelectric oxide BiAlO3. Phys. Rev. B 93, 245159 (2016).

    Article  Google Scholar 

  73. 73.

    Matos-Abiague, A. & Fabian, J. Tunneling anomalous and spin Hall effects. Phys. Rev. Lett. 115, 056602 (2015).

    CAS  Article  Google Scholar 

  74. 74.

    Long, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photon. 12, 528–533 (2018).

    CAS  Article  Google Scholar 

  75. 75.

    Long, G. et al. Chiral-perovskite optoelectronics. Nat. Rev. Mater. 5, 423–439 (2020).

    Article  Google Scholar 

  76. 76.

    Borghardt, S. et al. Engineering of optical and electronic band gaps in transition metal dichalcogenide monolayers through external dielectric screening. Phys. Rev. Mater. 1, 054001 (2017).

    Article  Google Scholar 

  77. 77.

    Yang, T. et al. Ultrahigh-performance optoelectronics demonstrated in ultrathin perovskite-based vertical semiconductor heterostructures. ACS Nano 13, 7996–8003 (2019).

    CAS  Article  Google Scholar 

  78. 78.

    Suntivich, J. et al. Design principles for oxygen-reduction activity on perovskite oxide catalysts for fuel cells and metal–air batteries. Nat. Chem. 3, 546–550 (2011).

    CAS  Article  Google Scholar 

  79. 79.

    Alonso, J. A. et al. On the location of Li+ cations in the fast Li-cation conductor La0.5Li0.5TiO3 perovskite. Angew. Chem. Int. Ed. 39, 619–621 (2000).

    CAS  Article  Google Scholar 

  80. 80.

    Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton-photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    CAS  Article  Google Scholar 

  81. 81.

    Gauthron, K. et al. Optical spectroscopy of two-dimensional layered (C6H5C2H4-NH3)2-PbI4 perovskite. Opt. Express 18, 5912–5919 (2010).

    CAS  Article  Google Scholar 

  82. 82.

    Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).

    CAS  Article  Google Scholar 

  83. 83.

    Liang, Y., Li, F. & Zheng, R. Low-dimensional hybrid perovskites for field-effect transistors with improved stability: progress and challenges. Adv. Electron. Mater. 6, 2000137 (2020).

    CAS  Article  Google Scholar 

  84. 84.

    Reid, O. G., Yang, M., Kopidakis, N., Zhu, K. & Rumbles, G. Grain-size-limited mobility in methylammonium lead iodide perovskite thin films. ACS Energy Lett. 1, 561–565 (2016).

    CAS  Article  Google Scholar 

  85. 85.

    Senanayak, S. P. et al. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Sci. Adv. 3, e1601935 (2017).

    Article  CAS  Google Scholar 

  86. 86.

    Allain, A., Kang, J., Banerjee, K. & Kis, A. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14, 1195–1205 (2015).

    CAS  Article  Google Scholar 

  87. 87.

    Schulman, D. S., Arnold, A. J. & Das, S. Contact engineering for 2D materials and devices. Chem. Soc. Rev. 47, 3037–3058 (2018).

    CAS  Article  Google Scholar 

  88. 88.

    Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    CAS  Article  Google Scholar 

  89. 89.

    Song, Q. et al. Observation of inverse Edelstein effect in Rashba-split 2DEG between SrTiO3 and LaAlO3 at room temperature. Sci. Adv. 3, e1602312 (2017).

    Article  CAS  Google Scholar 

  90. 90.

    Noël, P. et al. Non-volatile electric control of spin–charge conversion in a SrTiO3 Rashba system. Nature 580, 483–486 (2020).

    Article  CAS  Google Scholar 

  91. 91.

    Lemanov, V. V., Sotnikov, A. V., Smirnova, E. P., Weihnacht, M. & Kunze, R. Perovskite CaTiO3 as an incipient ferroelectric. Solid State Commun. 110, 611–614 (1999).

    CAS  Article  Google Scholar 

  92. 92.

    Kubicek, M., Bork, A. H. & Rupp, J. L. M. Perovskite oxides—a review on a versatile material class for solar-to-fuel conversion processes. J. Mater. Chem. A 5, 11983–12000 (2017).

    CAS  Article  Google Scholar 

  93. 93.

    Wu, M. K. et al. Superconductivity at 93 K in a new mixed-phase Y–Ba–Cu–O compound system at ambient pressure. Phys. Rev. Lett. 58, 908–910 (1987).

    CAS  Article  Google Scholar 

  94. 94.

    Maeda, H., Tanaka, Y., Fukutomi, M. & Asano, T. A new high-Tc oxide superconductor without a rare earth element. Jpn J. Appl. Phys. 27, L209–L210 (1988).

    CAS  Article  Google Scholar 

  95. 95.

    Liu, C. et al. Two-dimensional superconductivity and anisotropic transport at KTaO3 (111) interfaces. Science 371, 716–721 (2021).

    CAS  Article  Google Scholar 

  96. 96.

    MØLler, C. K. Crystal structure and photoconductivity of cæsium plumbohalides. Nature 182, 1436–1436 (1958).

    Article  Google Scholar 

  97. 97.

    Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    CAS  Article  Google Scholar 

  98. 98.

    Al-Ashouri, A. et al. Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction. Science 370, 1300–1309 (2020).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank P. Zhang (Technische Universität Dresden), Y. Li (Technische Universität Chemnitz) and C. Anichini (University of Strasbourg) for contributing Figs. 2 and 5. J.H.S. acknowledges financial support from the EU Graphene Flagship Core 3 programme and the DFG (SPP 2244). M.S. acknowledges financial support from the German Science Foundation (DFG: GRK 2642).

Author information

Affiliations

Authors

Contributions

A.G.R. and S.Y. conceived the project and wrote the manuscript. All authors contributed to the revision of the manuscript.

Corresponding authors

Correspondence to Sheng Yang or Jurgen H. Smet or Michael Saliba.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Qiaoliang Bao and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ricciardulli, A.G., Yang, S., Smet, J.H. et al. Emerging perovskite monolayers. Nat. Mater. (2021). https://doi.org/10.1038/s41563-021-01029-9

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing