Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Tension–compression asymmetry in amorphous silicon

Abstract

Hard and brittle materials usually exhibit a much lower strength when loaded in tension than in compression. However, this common-sense behaviour may not be intrinsic to these materials, but arises from their higher flaw sensitivity to tensile loading. Here, we demonstrate a reversed and unusually pronounced tension–compression asymmetry (tensile strength exceeds compressive strength by a large margin) in submicrometre-sized samples of isotropic amorphous silicon. The abnormal asymmetry in the yield strength and anelasticity originates from the reduction in shear modulus and the densification of the shear-activated configuration under compression, altering the magnitude of the activation energy barrier for elementary shear events in amorphous Si. In situ coupled electrical tests corroborate that compressive strains indeed cause increased atomic coordination (metallization) by transforming some local structures from sp3-bonded semiconducting motifs to more metallic-like sites, lending credence to the mechanism we propose. This finding opens up an unexplored regime of intrinsic tension–compression asymmetry in materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: T-C asymmetry in submicrometre-sized a-Si.
Fig. 2: T-C asymmetry of submicrometre-sized a-Si in the nominally ‘elastic’ regime.
Fig. 3: MD simulations of the T-C asymmetry in a-Si.
Fig. 4: Electrical resistance measured for a-Si under tension versus compression.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Additional data reported in the Supplementary Information are available from the corresponding authors upon request.

Code availability

The computer codes are available from the corresponding authors upon reasonable request.

References

  1. Meyers, M. A. & Chawla, K. K. Mechanical Behavior of Materials 2nd edn (Cambridge Univ. Press, 2008).

  2. Chen, X., Wu, S. & Zhou, J. Influence of porosity on compressive and tensile strength of cement mortar. Constr. Build. Mater. 40, 869–874 (2013).

    Article  Google Scholar 

  3. Pelleg, J. Mechanical Properties of Ceramics Vol. 213 (Springer Science and Business, 2014).

  4. Wachtman, J. B., Cannon, W. R. & Matthewson, M. J. Mechanical Properties of Ceramics (John Wiley and Sons, 2009).

  5. Davidge, R. Mechanical properties of ceramic materials. Contemp. Phys. 10, 105–124 (1969).

    Article  CAS  Google Scholar 

  6. Griffith, A. The phenomena of flow and rupture in solids. Phil. Trans. R. Soc. A 221, 163–198 (1920).

    Google Scholar 

  7. Zhao, P., Li, J. & Wang, Y. Extended defects, ideal strength and actual strengths of finite-sized metallic glasses. Acta Mater. 73, 149–166 (2014).

    Article  CAS  Google Scholar 

  8. Zhang, H. et al. Approaching the ideal elastic strain limit in silicon nanowires. Sci. Adv. 2, e1501382 (2016).

    Article  CAS  Google Scholar 

  9. Banerjee, A. et al. Ultralarge elastic deformation of nanoscale diamond. Science 360, 300–302 (2018).

    Article  CAS  Google Scholar 

  10. Tian, L. C. et al. Approaching the ideal elastic limit of metallic glasses. Nat. Commun. 3, 609 (2012).

    Article  CAS  Google Scholar 

  11. Hedler, A., Klaumünzer, S. L. & Wesch, W. Amorphous silicon exhibits a glass transition. Nat. Mater. 3, 804–809 (2004).

    Article  CAS  Google Scholar 

  12. Treacy, M. & Borisenko, K. B. The local structure of amorphous silicon. Science 335, 950–953 (2012).

    Article  CAS  Google Scholar 

  13. Wang, Y. et al. Tunable anelasticity in amorphous Si nanowires. Nano Lett. 20, 449–455 (2020).

    Article  CAS  Google Scholar 

  14. Sriraman, S., Agarwal, S., Aydil, E. S. & Maroudas, D. Mechanism of hydrogen-induced crystallization of amorphous silicon. Nature 418, 62–65 (2002).

    Article  CAS  Google Scholar 

  15. Deringer, V. L. B. et al. Origins of structural and electronic transitions in disordered silicon. Nature 589, 59–64 (2021).

    Article  CAS  Google Scholar 

  16. Gerbig, Y. B., Michaels, C. A., Bradby, J. E., Haberl, B. & Cook, R. F. In situ spectroscopic study of the plastic deformation of amorphous silicon under nonhydrostatic conditions induced by indentation. Phys. Rev. B 92, 214110 (2015).

    Article  CAS  Google Scholar 

  17. Liu, K., Ostadhassan, M., Bubach, B., Dietrich, R. & Rasouli, V. Nano-dynamic mechanical analysis (nano-DMA) of creep behavior of shales: Bakken case study. J. Mater. Sci. 53, 4417–4432 (2018).

    Article  CAS  Google Scholar 

  18. Ye, J. C., Lu, J., Liu, C. T., Wang, Q. & Yang, Y. Atomistic free-volume zones and inelastic deformation of metallic glasses. Nat. Mater. 9, 619–623 (2010).

    Article  CAS  Google Scholar 

  19. Herbert, E., Oliver, W. C. & Pharr, G. M. Nanoindentation and the dynamic characterization of viscoelastic solids. J. Phys. D Appl. Phys. 41, 074021 (2008).

    Article  CAS  Google Scholar 

  20. Yuan, Y. & Verma, R. Measuring microelastic properties of stratum comeum. Colloids Surf. B 48, 6–12 (2006).

    Article  CAS  Google Scholar 

  21. Stillinger, F. H. & Weber, T. A. Computer simulation of local order in condensed phases of silicon. Phys. Rev. B 31, 5262–5271 (1985).

    Article  CAS  Google Scholar 

  22. Justo, J. F., Bazant, M. Z., Kaxiras, E., Bulatov, V. V. & Yip, S. Interatomic potential for silicon defects and disordered phases. Phys. Rev. B 58, 2539–2550 (1998).

    Article  CAS  Google Scholar 

  23. Bartok, A. P., Kermode, J. R., Bernstein, N. & Csanyi, G. Machine learning a general-purpose interatomic potential for silicon. Phys. Rev. X 8, 041048 (2018).

    CAS  Google Scholar 

  24. Deringer, V. L. et al. Realistic atomistic structure of amorphous silicon from machine-learning-driven molecular dynamics. J. Phys. Chem. Lett. 9, 2879–2885 (2018).

    Article  CAS  Google Scholar 

  25. Johnson, W. & Samwer, K. A universal criterion for plastic yielding of metallic glasses with a (T/Tg)2/3 temperature dependence. Phys. Rev. Lett. 95, 195501 (2005).

    Article  CAS  Google Scholar 

  26. Fan, Z. & Ma, E. Predicting orientation-dependent plastic susceptibility from static structure in amorphous solids via deep learning. Nat. Commun. 12, 1506 (2021).

    Article  CAS  Google Scholar 

  27. Demkowicz, M. J. & Argon, A. S. High-density liquidlike component facilitates plastic flow in a model amorphous silicon system. Phys. Rev. Lett. 93, 025505 (2004).

    Article  CAS  Google Scholar 

  28. Rubinstein, M. & Panyukov, M. Nonaffine deformation and elasticity of polymer networks. Macromolecules 30, 8036–8044 (1997).

    Article  CAS  Google Scholar 

  29. Argon, A. & Demkowicz, M. What can plasticity of amorphous silicon tell us about plasticity of metallic glasses? Metall. Mater. Trans. A 39, 1762–1778 (2008).

    Article  CAS  Google Scholar 

  30. Demkowicz, M. J. & Argon, A. S. Liquidlike atomic environments act as plasticity carriers in amorphous silicon. Phys. Rev. B 72, 245205 (2005).

    Article  CAS  Google Scholar 

  31. Fan, Z., Ding, J., Li, Q. J. & Ma, E. Correlating the properties of amorphous silicon with its flexibility volume. Phys. Rev. B 95, 144211 (2017).

    Article  Google Scholar 

  32. Boioli, F., Albaret, T. & Rodney, D. Shear transformation distribution and activation in glasses at the atomic scale. Phys. Rev. E 95, 033005 (2017).

    Article  CAS  Google Scholar 

  33. Morishita, T. High density amorphous form and polyamorphic transformations of silicon. Phys. Rev. Lett. 93, 055503 (2004).

    Article  CAS  Google Scholar 

  34. Cheng, Y. & Ma, E. Atomic-level structure and structure–property relationship in metallic glasses. Prog. Mater. Sci. 56, 379–473 (2011).

    Article  CAS  Google Scholar 

  35. Schuh, C. A. & Lund, A. C. Atomistic basis for the plastic yield criterion of metallic glass. Nat. Mater. 2, 449–452 (2003).

    Article  CAS  Google Scholar 

  36. Li, W. et al. Deformation-driven diffusion and plastic flow in amorphous granular pillars. Phys. Rev. E 91, 062212 (2015).

    Article  CAS  Google Scholar 

  37. Daisenberger, D., McMillan, P. F. & Wilson, M. Crystal-liquid interfaces and phase relations in stable and metastable silicon at positive and negative pressure. Phys. Rev. B 82, 214101 (2010).

    Article  CAS  Google Scholar 

  38. Jiang, C. & Srinivasan, S. G. Unexpected strain-stiffening in crystalline solids. Nature 496, 339–342 (2013).

    Article  CAS  Google Scholar 

  39. Johlin, E. et al. Structural origins of intrinsic stress in amorphous silicon thin films. Phys. Rev. B 85, 075202 (2012).

    Article  CAS  Google Scholar 

  40. Gaire, C., Ye, D. X., Lu, T. M., Wang, G. C. & Picu, R. C. Deformation of amorphous silicon nanostructures subjected to monotonic and cyclic loading. J. Mater. Res. 23, 328–335 (2008).

    Article  CAS  Google Scholar 

  41. Abadias, G. et al. Review article: stress in thin films and coatings: current status, challenges, and prospects. J. Vac. Sci. Technol. A 36, 020801 (2018).

    Article  CAS  Google Scholar 

  42. Zhao, K. J., Li, Y. G. & Brassart, L. Pressure-sensitive plasticity of lithiated silicon in Li-ion batteries. Acta Mech. Sin. 29, 379–387 (2013).

    Article  CAS  Google Scholar 

  43. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  44. Ding, J. et al. Universal structural parameter to quantitatively predict metallic glass properties. Nat. Commun. 7, 13733 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Z.S. and Y.W. acknowledge support from National Natural Science Foundation of China (51902249 and 5203000210), the National Key Research and Development Program of China (no. 2017YFB0702001) and China Postdoctoral Science Foundation (2019M663696). J.D. acknowledges support from National Natural Science Foundation of China (12004294) and National Youth Talents Program. J.L. acknowledges support by the National Science Foundation (DMR-1923976). L.T. acknowledges the Alexander von Humboldt Foundation and the Start-Bridge-Finish Program from International Center for Advanced Studies of Energy Conversion (ICASEC) for financial support. Z.F. thanks A. Bartok-Partay for the help in using the ML-based interatomic potential, and acknowledges the computational resources of the Maryland Advanced Research Computing Center. We thank R. Ritchie and M. Asta for helpful discussions. We thank J. Zhu, S. Yan and D. Zhang at Xi’an Jiaotong University for their assistance in nano dynamic mechanical analysis tests. E.M. and J.D. thank Xi’an Jiaotong University for supporting their work at the Center for Alloy Innovation and Design (CAID).

Author information

Authors and Affiliations

Authors

Contributions

E.M., J.L. and Z.S. supervised the project. Y.W. and L.T. carried out the experimental investigations with assistance from M.L., H.L. and Y.Z.; J.D. and Z.F. led the modelling effort. E.M. and Y.W. wrote the paper with input from J.D., Z.F., J.L. and Z.S. All authors contributed to the discussions.

Corresponding authors

Correspondence to En Ma, Ju Li or Zhiwei Shan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Paul McMillan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figures 1-19, Supplementary Notes 1-3, Supplementary Table 1, and additional references 1–17.

Supplementary Video In situ TEM video shows the tension and compression processes of a representative a-Si TC sample.

Source data

Source Data Fig. 1

Statistical Source Data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Ding, J., Fan, Z. et al. Tension–compression asymmetry in amorphous silicon. Nat. Mater. 20, 1371–1377 (2021). https://doi.org/10.1038/s41563-021-01017-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01017-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing