Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Revealing the role of the cathode–electrolyte interface on solid-state batteries

Subjects

Abstract

Interfaces have crucial, but still poorly understood, roles in the performance of secondary solid-state batteries. Here, using crystallographically oriented and highly faceted thick cathodes, we directly assess the impact of cathode crystallography and morphology on the long-term performance of solid-state batteries. The controlled interface crystallography, area and microstructure of these cathodes enables an understanding of interface instabilities unknown (hidden) in conventional thin-film and composite solid-state electrodes. A generic and direct correlation between cell performance and interface stability is revealed for a variety of both lithium- and sodium-based cathodes and solid electrolytes. Our findings highlight that minimizing interfacial area, rather than its expansion as is the case in conventional composite cathodes, is key to both understanding the nature of interface instabilities and improving cell performance. Our findings also point to the use of dense and thick cathodes as a way of increasing the energy density and stability of solid-state batteries.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Designed SE–cathode interfaces enhance understanding of the effect of interface on performance.
Fig. 2: LCO crystallographic orientations and top surface microstructures.
Fig. 3: Comparison of composite and dense cathodes and halide SE SSBs.
Fig. 4: Interfacial impedance of Li- and Na-ion systems during the first charge (0.1 C).
Fig. 5: Correlation between capacity fade and interfacial resistance.
Fig. 6: DFT calculated LCO–LYC interface structure.

Data availability

The authors declare that all data supporting the findings of this study are available within the paper and its Supplementary Information files. Additional data are available from the corresponding authors upon reasonable request.

References

  1. 1.

    Randau, S. et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy 5, 259–270 (2020).

    CAS  Google Scholar 

  2. 2.

    Tikekar, M. D., Choudhury, S., Tu, Z. & Archer, L. A. Design principles for electrolytes and interfaces for stable lithium-metal batteries. Nat. Energy 1, 16114 (2016).

    CAS  Google Scholar 

  3. 3.

    Xiao, Y. et al. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. 5, 105–126 (2020).

    CAS  Google Scholar 

  4. 4.

    Han, S. Y. et al. Porous metals from chemical dealloying for solid-state battery anodes. Chem. Mater. 32, 2461–2469 (2020).

    CAS  Google Scholar 

  5. 5.

    Lewis, J. A., Tippens, J., Cortes, F. J. Q. & McDowell, M. T. Chemo-mechanical challenges in solid-state batteries. Trends Chem. 1, 845–857 (2019).

    CAS  Google Scholar 

  6. 6.

    Zhang, J. et al. Unraveling the intra and intercycle interfacial evolution of Li6PS5Cl-based all-solid-state lithium batteries. Adv. Energy Mater. 10, 1903311 (2020).

    CAS  Google Scholar 

  7. 7.

    Wang, C. et al. Unveiling the critical role of interfacial ionic conductivity in all-solid-state lithium batteries. Nano Energy 72, 104686 (2020).

    CAS  Google Scholar 

  8. 8.

    Zhang, W. et al. Degradation mechanisms at the Li10GeP2S12/LiCoO2 cathode interface in an all-solid-state lithium-ion battery. ACS Appl. Mater. Interfaces 10, 22226–22236 (2018).

    CAS  Google Scholar 

  9. 9.

    Zhu, Y., He, X. & Mo, Y. Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS Appl. Mater. Interfaces 7, 23685–23693 (2015).

    CAS  Google Scholar 

  10. 10.

    Li, J., Ma, C., Chi, M., Liang, C. & Dudney, N. J. Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015).

    Google Scholar 

  11. 11.

    Shiraki, S. et al. Atomically well-ordered structure at solid electrolyte and electrode interface reduces the interfacial resistance. ACS Appl. Mater. Interfaces 10, 41732–41737 (2018).

    CAS  Google Scholar 

  12. 12.

    Kawasoko, H., Shiraki, S., Suzuki, T., Shimizu, R. & Hitosugi, T. Extremely low resistance of Li3PO4 electrolyte/Li(Ni0.5Mn1.5)O4 electrode interfaces. ACS Appl. Mater. Interfaces 10, 27498–27502 (2018).

    CAS  Google Scholar 

  13. 13.

    Moitzheim, S., Put, B. & Vereecken, P. M. Advances in 3D thin-film Li-ion batteries. Adv. Mater. Interfaces 6, 1900805 (2019).

    Google Scholar 

  14. 14.

    Kuwata, N., Iwagami, N., Tanji, Y., Matsuda, Y. & Kawamura, J. Characterization of thin-film lithium batteries with stable thin-film Li3PO4 solid electrolytes fabricated by ArF excimer laser deposition. J. Electrochem. Soc. 157, A521 (2010).

    CAS  Google Scholar 

  15. 15.

    le Van-Jodin, L., Ducroquet, F., Sabary, F. & Chevalier, I. Dielectric properties, conductivity and Li+ ion motion in LiPON thin films. Solid State Ion. 253, 151–156 (2013).

    Google Scholar 

  16. 16.

    Kim, K. H. et al. Characterization of the interface between LiCoO2 and Li7La3Zr2O12 in an all-solid-state rechargeable lithium battery. J. Power Sources 196, 764–767 (2011).

    CAS  Google Scholar 

  17. 17.

    Park, K. et al. Electrochemical nature of the cathode interface for a solid-state lithium-ion battery: interface between LiCoO2 and garnet-Li7La3Zr2O12. Chem. Mater. 28, 8051–8059 (2016).

    CAS  Google Scholar 

  18. 18.

    Wang, C. et al. Garnet-type solid-state electrolytes: materials, interfaces, and batteries. Chem. Rev. 120, 4257–4300 (2020).

    CAS  Google Scholar 

  19. 19.

    Sakuda, A., Hayashi, A. & Tatsumisago, M. Interfacial observation between LiCoO2 electrode and Li2S–P2S5 solid electrolytes of all-solid-state lithium secondary batteries using transmission electron microscopy. Chem. Mater. 22, 949–956 (2010).

    CAS  Google Scholar 

  20. 20.

    Walther, F. et al. Visualization of the interfacial decomposition of composite cathodes in argyrodite-based all-solid-state batteries using time-of-flight secondary-ion mass spectrometry. Chem. Mater. 31, 3745–3755 (2019).

    CAS  Google Scholar 

  21. 21.

    Zhang, W. et al. Interfacial processes and influence of composite cathode microstructure controlling the performance of all-solid-state lithium batteries. ACS Appl. Mater. Interfaces 9, 17835–17845 (2017).

    CAS  Google Scholar 

  22. 22.

    Zhang, H. et al. Electroplating lithium transition metal oxides. Sci. Adv. 3, e1602427 (2017).

    Google Scholar 

  23. 23.

    Patra, A. et al. Electrodeposition of atmosphere-sensitive ternary sodium transition metal oxide films for sodium-based electrochemical energy storage. Proc. Natl Acad. Sci. USA https://doi.org/10.1073/pnas.2025044118 (2021).

  24. 24.

    Takeuchi, S. et al. Epitaxial LiCoO2 films as a model system for fundamental electrochemical studies of positive electrodes. ACS Appl. Mater. Interfaces 7, 7901–7911 (2015).

    CAS  Google Scholar 

  25. 25.

    Xia, H., Lu, L. & Ceder, G. Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition. J. Power Sources 159, 1422–1427 (2006).

    CAS  Google Scholar 

  26. 26.

    Williams, D. B. & Carter, C. B. Transmission Electron Microscopy: a Textbook for Materials Science (Springer, 2009).

  27. 27.

    Tan, X., Zahiri, B., Holt, C. M. B., Kubis, A. & Mitlin, D. A TEM based study of the microstructure during room temperature and low temperature hydrogen storage cycling in MgH2 promoted by Nb-V. Acta Mater. 60, 5646–5661 (2012).

    CAS  Google Scholar 

  28. 28.

    Lin, Z. J., Zhuo, M. J., Sun, Z. Q., Veyssière, P. & Zhou, Y. C. Amorphization by dislocation accumulation in shear bands. Acta Mater. 57, 2851–2857 (2009).

    CAS  Google Scholar 

  29. 29.

    Li, R. et al. Unraveling submicron-scale mechanical heterogeneity by three-dimensional X-ray microdiffraction. Proc. Natl Acad. Sci. USA 115, 483–488 (2018).

    CAS  Google Scholar 

  30. 30.

    Khalajhedayati, A. & Rupert, T. J. Disruption of thermally-stable nanoscale grain structures by strain localization. Sci. Rep. 5, 10663 (2015).

    CAS  Google Scholar 

  31. 31.

    Asano, T. et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. 30, 1803075 (2018).

    Google Scholar 

  32. 32.

    Li, X. et al. Progress and perspectives on halide lithium conductors for all-solid-state lithium batteries. Energy Environ. Sci. https://doi.org/10.1039/c9ee03828k (2020).

  33. 33.

    Liang, J. et al. Site-occupation-tuned superionic LixScCl3+x halide solid electrolytes for all-solid-state batteries. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.0c00134 (2020).

  34. 34.

    Park, K. H. et al. High-voltage superionic halide solid electrolytes for all-solid-state Li-ion batteries. ACS Energy Lett. 5, 533–539 (2020).

    CAS  Google Scholar 

  35. 35.

    Li, X. et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy Environ. Sci. 12, 2665–2671 (2019).

    CAS  Google Scholar 

  36. 36.

    Li, X. et al. Water-mediated synthesis of a superionic halide solid electrolyte. Angew. Chem. 131, 16579–16584 (2019).

    Google Scholar 

  37. 37.

    Hayashi, A., Noi, K., Sakuda, A. & Tatsumisago, M. Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat. Commun. 3, 856 (2012).

    Google Scholar 

  38. 38.

    Nguyen, H. et al. Single-step synthesis of highly conductive Na3PS4 solid electrolyte for sodium all solid-state batteries. J. Power Sources 435, 126623 (2019).

    CAS  Google Scholar 

  39. 39.

    Wu, E. A. et al. A stable cathode-solid electrolyte composite for high-voltage, long-cycle-life solid-state sodium-ion batteries. Nat. Commun. 12, 1256 (2021).

    CAS  Google Scholar 

  40. 40.

    Reimers, J. N. Electrochemical and in situ X-ray diffraction studies of lithium intercalation in LixCoO2. J. Electrochem. Soc. 139, 2091 (1992).

    CAS  Google Scholar 

  41. 41.

    Wang, C. et al. Interface-assisted in-situ growth of halide electrolytes eliminating interfacial challenges of all-inorganic solid-state batteries. Nano Energy 76, 105015 (2020).

    CAS  Google Scholar 

  42. 42.

    Farber, L., Barsoum, M. W., Zavaliangos, A., El-Raghy, T. & Levin, I. Dislocations and stacking faults in Ti3SiC2. J. Am. Ceram. Soc. 81, 1677–1681 (2005).

    Google Scholar 

  43. 43.

    Wang, S. et al. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability. Angew. Chem. Int. Ed. 58, 8039–8043 (2019).

    CAS  Google Scholar 

  44. 44.

    Bondarenko, A. S. & Ragoisha, G. A. in Progress in Chemometrics Research (ed. Pomerantsev, A. L.) 89–102 (Institute of Chemical Physics, Nova Science, 2005).

  45. 45.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B Condens. Matter Mater. Phys. 54, 11169–11186 (1996).

    CAS  Google Scholar 

  46. 46.

    Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Google Scholar 

  47. 47.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  48. 48.

    Dudarev, S. L., Botton, G. A., Savrasov, S. Y., Humphreys, C. J. & Sutton, A. P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study. Phys. Rev. B 57, 1505 (1998).

    CAS  Google Scholar 

  49. 49.

    Haruyama, J., Sodeyama, K., Han, L., Takada, K. & Tateyama, Y. Space-charge layer effect at interface between oxide cathode and sulfide electrolyte in all-solid-state lithium-ion battery. Chem. Mater. 26, 4248–4255 (2014).

    CAS  Google Scholar 

  50. 50.

    Mathew, K. et al. MPInterfaces: a materials project based Python tool for high-throughput computational screening of interfacial systems. Comput. Mater. Sci. 122, 183–190 (2016).

    CAS  Google Scholar 

  51. 51.

    Zur, A. & McGill, T. C. Lattice match: an application to heteroepitaxy. J. Appl. Phys. 55, 378–386 (1984).

    CAS  Google Scholar 

  52. 52.

    Hu, L. et al. Ab initio studies on the stability and electronic structure of LiCoO2 (003). Surf. Phys. Rev. B 71, 125433 (2005).

    Google Scholar 

Download references

Acknowledgements

Work at the University of Illinois at Urbana–Champaign is supported by the US Army CERL W9132T-19–2–0008. Aspects of this work were carried out in the University of Illinois Materials Research Laboratory Central Facilities. We thank R. Haasch of the Materials Research Laboratory for the acquisition of XPS data and instructive discussions. We thank P. Sun and M. Caple of the Braun group for fruitful discussions.

Author information

Affiliations

Authors

Contributions

B.Z. and P.V.B. conceived the idea. C.K. and J.B.C. conducted the electroplating of dense LCO cathodes and collected liquid-cell electrochemical cycling data. B.Z. synthesized SEs, designed and performed SSB tests, conducted the impedance analysis and conducted structural characterization via electron microscopy. A.P. synthesized the dense NCO cathodes and carried out X-ray diffraction pole figure acquisition, refinement and data analysis. A.X.B.Y. and E.E. conducted DFT calculations. B.Z. and P.V.B. wrote the paper, with contributions from all co-authors.

Corresponding authors

Correspondence to John B. Cook or Paul V. Braun.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Matthew McDowell and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion Sections 1–14, Figs. 1–39 and Tables 1 and 2.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zahiri, B., Patra, A., Kiggins, C. et al. Revealing the role of the cathode–electrolyte interface on solid-state batteries. Nat. Mater. (2021). https://doi.org/10.1038/s41563-021-01016-0

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing