Abstract
An overwhelming diversity of colloidal building blocks with distinct sizes, materials and tunable interaction potentials are now available for colloidal self-assembly. The application space for materials composed of these building blocks is vast. To make progress in the rational design of new self-assembled materials, it is desirable to guide the experimental synthesis efforts by computational modelling. Here, we discuss computer simulation methods and strategies used for the design of soft materials created through bottom-up self-assembly of colloids and nanoparticles. We describe simulation techniques for investigating the self-assembly behaviour of colloidal suspensions, including crystal structure prediction methods, phase diagram calculations and enhanced sampling techniques, as well as their limitations. We also discuss the recent surge of interest in machine learning and reverse-engineering methods. Although their implementation in the colloidal realm is still in its infancy, we anticipate that these data-science tools offer new paradigms in understanding, predicting and (inverse) design of novel colloidal materials.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Feynman, R. P. There’s plenty of room at the bottom. Eng. Sci. 23, 22–36 (1960).
Glotzer, S. C. & Solomon, M. J. Anisotropy of building blocks and their assembly into complex structures. Nat. Mater. 6, 557–562 (2007).
Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).
Likos, C. N. Soft matter with soft particles. Soft Matter 2, 478–498 (2006).
Sacanna, S. & Pine, D. J. Shape-anisotropic colloids: building blocks for complex assemblies. Curr. Opin. Colloid Interface Sci. 16, 96–105 (2011).
Cademartiri, L. & Bishop, K. J. Programmable self-assembly. Nat. Mater. 14, 2–9 (2015).
Rovigatti, L., Gnan, N., Tavagnacco, L., Moreno, A. J. & Zaccarelli, E. Numerical modelling of non-ionic microgels: an overview. Soft Matter 15, 1108–1119 (2019).
Bolintineanu, D. S. et al. Particle dynamics modeling methods for colloid suspensions. Comput. Part. Mech. 1, 321–356 (2014).
Allen, M. P. & Tildesley, D. J. Computer Simulation of Liquids (Clarendon, 1987).
Frenkel, D. & Smit, B. Understanding Molecular Simulation 2nd edn (Academic, 2002).
Binks, B. P. & Horozov, T. S. Colloidal Particles at Liquid Interfaces (Cambridge University Press, 2006).
Maciołek, A. & Dietrich, S. Collective behavior of colloids due to critical Casimir interactions. Rev. Mod. Phys. 90, 045001 (2018).
Muševič, I. Nematic liquid-crystal colloids. Materials 11, 24 (2018).
Dijkstra, M. Computer simulations of charge and steric stabilised colloidal suspensions. Curr. Opin. Colloid Interface Sci. 6, 372–382 (2001).
Alder, B. J. & Wainwright, T. E. Phase transition for a hard sphere system. J. Chem. Phys. 27, 1208–1209 (1957).
Wood, W. W. & Jacobson, J. Preliminary results from a recalculation of the Monte Carlo equation of state of hard spheres. J. Chem. Phys. 27, 1207–1208 (1957).
Torquato, S. & Jiao, Y. Dense packings of the Platonic and Archimedean solids. Nature 460, 876–879 (2009).
Agarwal, U. & Escobedo, F. A. Mesophase behaviour of polyhedral particles. Nat. Mater. 10, 230 (2011).
Damasceno, P. F., Engel, M. & Glotzer, S. C. Predictive self-assembly of polyhedra into complex structures. Science 337, 453–457 (2012).
Dijkstra, M. Entropy-driven phase transitions in colloids: from spheres to anisotropic particles. Adv. Chem. Phys. 156, 35 (2015).
Gilbert, E. G., Johnson, D. W. & Keerthi, S. S. A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE J. Robot. Autom. 4, 193–203 (1988).
GAMMA Research Group at the University of North Carolina RAPID—Robust and Accurate Polygon Interference Detection http://gamma.cs.unc.edu/OBB/ (1997).
Asakura, S. & Oosawa, F. On interaction between two bodies immersed in a solution of macromolecules. J. Chem. Phys. 22, 1255–1256 (1954).
Vrij, A. Polymers at interfaces and the interactions in colloidal dispersions. Pure Appl. Chem. 48, 471–483 (1976).
Dijkstra, M., van Roij, R., Roth, R. & Fortini, A. Effect of many-body interactions on the bulk and interfacial phase behavior of a model colloid–polymer mixture. Phys. Rev. E 73, 041404 (2006).
Liu, J. & Luijten, E. Rejection-free geometric cluster algorithm for complex fluids. Phys. Rev. Lett. 92, 035504 (2004).
Linse, P. Structure, phase stability, and thermodynamics in charged colloidal solutions. J. Chem. Phys. 113, 4359–4373 (2000).
Hockney, R. W. & Eastwood, J. W. Computer Simulation Using Particles (McGraw-Hill, 1981).
Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N·log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).
Greengard, L. & Moura, M. On the numerical evaluation of electrostatic fields in composite materials. Acta Numer. 3, 379–410 (1994).
Hynninen, A.-P. & Dijkstra, M. Phase diagrams of hard-core repulsive Yukawa particles. Phys. Rev. E 68, 021407 (2003).
van Roij, R., Dijkstra, M. & Hansen, J.-P. Phase diagram of charge-stabilized colloidal suspensions: van der Waals instability without attractive forces. Phys. Rev. E 59, 2010 (1999).
Linse, P. & Lobaskin, V. Electrostatic attraction and phase separation in solutions of like-charged colloidal particles. Phys. Rev. Lett. 83, 4208–4211 (1999).
Levin, Y. Strange electrostatics in physics, chemistry, and biology. Physica A 352, 43–52 (2005).
Leunissen, M. E. et al. Ionic colloidal crystals of oppositely charged particles. Nature 437, 235–240 (2005).
Tohver, V., Smay, J. E., Braem, A., Braun, P. V. & Lewis, J. A. Nanoparticle halos: a new colloid stabilization mechanism. Proc. Natl Acad. Sci. USA 98, 8950–8954 (2001).
Liu, J. & Luijten, E. Stabilization of colloidal suspensions by means of highly charged nanoparticles. Phys. Rev. Lett. 93, 247802 (2004).
Sciortino, F., Giacometti, A. & Pastore, G. Phase diagram of Janus particles. Phys. Rev. Lett. 103, 237801 (2009).
Jiang, S. et al. Janus particle synthesis and assembly. Adv. Mater. 22, 1060–1071 (2010).
Walther, A. & Müller, A. H. E. Janus particles: synthesis, self-assembly, physical properties, and applications. Chem. Rev. 113, 5194–5261 (2013).
Smallenburg, F. & Sciortino, F. Liquids more stable than crystals in particles with limited valence and flexible bonds. Nat. Phys. 9, 554–558 (2013).
Zhang, J., Luijten, E. & Granick, S. Toward design rules of directional Janus colloidal assembly. Annu. Rev. Phys. Chem. 66, 581–600 (2015).
Du, J. & O’Reilly, R. K. Anisotropic particles with patchy, multicompartment and Janus architectures: preparation and application. Chem. Soc. Rev. 40, 24020–2416 (2011).
Chen, Q. et al. Triblock colloids for directed self-assembly. J. Am. Chem. Soc. 133, 7725–7727 (2011).
Kern, N. & Frenkel, D. Fluid–fluid coexistence in colloidal systems with short-ranged strongly directional attraction. J. Chem. Phys. 118, 9882–9889 (2003).
Hong, L., Cacciuto, A., Luijten, E. & Granick, S. Clusters of charged Janus spheres. Nano Lett. 6, 2510–2514 (2006).
Sciortino, F., Giacometti, A. & Pastore, G. Phase diagram of Janus particles. Phys. Rev. Lett. 103, 237801 (2009).
Zhang, J., Luijten, E., Grzybowski, B. A. & Granick, S. Active colloids with collective mobility: status and research opportunities. Chem. Soc. Rev. 46, 5551–5569 (2017).
Bianchi, E., Largo, J., Tartaglia, P., Zaccarelli, E. & Sciortino, F. Phase diagram of patchy colloids: towards empty liquids. Phys. Rev. Lett. 97, 168301 (2006).
Ruzicka, B. et al. Observation of empty liquids and equilibrium gels in a colloidal clay. Nat. Mater. 10, 56–60 (2011).
Romano, F. & Sciortino, F. Patterning symmetry in the rational design of colloidal crystals. Nat. Commun. 3, 975 (2012).
Mirkin, C. A., Letsinger, R. L., Mucic, R. C. & Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).
Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).
Park, S. Y. et al. DNA-programmable nanoparticle crystallization. Nature 451, 553–556 (2008).
Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).
Jones, M. R., Seeman, N. C. & Mirkin, C. A. Programmable materials and the nature of the DNA bond. Science 347, 1260901 (2015).
Jones, M. R., Macfarlane, R. J., Prigodich, A. E., Patel, P. C. & Mirkin, C. A. Nanoparticle shape anisotropy dictates the collective behavior of surface-bound ligands. J. Am. Chem. Soc. 133, 18865–18869 (2011).
Martinez-Veracoechea, F. J., Mladek, B. M., Tkachenko, A. V. & Frenkel, D. Design rule for colloidal crystals of DNA-functionalized particles. Phys. Rev. Lett. 107, 045902 (2011).
Macfarlane, R. J., O’Brien, M. N., Petrosko, S. H. & Mirkin, C. A. Nucleic acid-modified nanostructures as programmable atom equivalents: forging a new ‘table of elements’. Angew. Chem. Int. Ed. 52, 5688–5698 (2013).
McGinley, J. T., Wang, Y., Jenkins, I. C., Sinno, T. & Crocker, J. C. Crystal-templated colloidal clusters exhibit directional DNA interactions. ACS Nano 9, 10817–10825 (2015).
Wang, Y. et al. Crystallization of DNA-coated colloids. Nat. Commun. 6, 7253 (2015).
van der Meulen, S. A. J. & Leunissen, M. E. Solid colloids with surface-mobile DNA linkers. J. Am. Chem. Soc. 135, 15129–15134 (2013).
Angioletti-Uberti, S., Mognetti, B. M. & Frenkel, D. Theory and simulation of DNA-coated colloids: a guide for rational design. Phys. Chem. Chem. Phys. 18, 6373–6393 (2016).
Ouldridge, T. E., Louis, A. A. & Doye, J. P. K. Structural, mechanical, and thermodynamic properties of a coarse-grained DNA model. J. Chem. Phys. 134, 085101 (2011).
Li, T. I. N. G., Sknepnek, R., Macfarlane, R. J., Mirkin, C. A. & Olvera de la Cruz, M. Modeling the crystallization of spherical nucleic acid nanoparticle conjugates with molecular dynamics simulations. Nano Lett. 12, 2509–2514 (2012).
Hinckley, D. M., Freeman, G. S., Whitmer, J. K. & de Pablo, J. J. An experimentally-informed coarse-grained 3-site-per-nucleotide model of DNA: structure. J. Chem. Phys. 139, 144903 (2013).
Markegard, C. B., Gallivan, C. P., Cheng, D. D. & Nguyen, H. D. Effects of concentration and temperature on DNA hybridization by two closely related sequences via large-scale coarse-grained simulations. J. Phys. Chem. B 120, 7795–7806 (2016).
Fong, L.-K., Wang, Z., Schatz, G. C., Luijten, E. & Mirkin, C. A. The role of structural enthalpy in spherical nucleic acid hybridization. J. Am. Chem. Soc. 140, 6226–6230 (2018).
Girard, M. et al. Particle analogs of electrons in colloidal crystals. Science 364, 1174–1178 (2019).
Hynninen, A.-P., Christova, C., van Roij, R., van Blaaderen, A. & Dijkstra, M. Prediction and observation of crystal structures of oppositely charged colloids. Phys. Rev. Lett. 96, 138308 (2006).
Fornleitner, J., LoVerso, F., Kahl, G. & Likos, C. N. Genetic algorithms predict formation of exotic ordered configurations for two-component dipolar monolayers. Soft Matter 4, 480–484 (2008).
Bianchi, E., Doppelbauer, G., Filion, L., Dijkstra, M. & Kahl, G. Predicting patchy particle crystals: variable box shape simulations and evolutionary algorithms. J. Chem. Phys. 136, 214102 (2012).
Fornleitner, J. & Kahl, G. Lane formation vs. cluster formation in two-dimensional square-shoulder systems—a genetic algorithm approach. Europhys. Lett. 82, 18001 (2008).
Stucke, D. P. & Crespi, V. H. Predictions of new crystalline states for assemblies of nanoparticles: perovskite analogues and 3-D arrays of self-assembled nanowires. Nano Lett. 3, 1183–1186 (2003).
Filion, L. et al. Efficient method for predicting crystal structures at finite temperature: variable box shape simulations. Phys. Rev. Lett. 103, 188302 (2009).
Haji-Akbari, A. et al. Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature 462, 773–777 (2009).
de Graaf, J., Filion, L., Marechal, M., van Roij, R. & Dijkstra, M. Crystal-structure prediction via the floppy-box Monte Carlo algorithm: method and application to hard (non)convex particles. J. Chem. Phys. 137, 214101 (2012).
Ladd, A. & Woodcock, L. Interfacial and co-existence properties of the Lennard-Jones system at the triple point. Mol. Phys. 36, 611–619 (1978).
Kofke, D. A. Gibbs–Duhem integration: a new method for direct evaluation of phase coexistence by molecular simulation. Mol. Phys. 78, 1331–1336 (1993).
Bolhuis, P. G. & Kofke, D. A. Monte Carlo study of freezing of polydisperse hard spheres. Phys. Rev. E 54, 634 (1996).
Torrie, G. M. & Valleau, J. P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comp. Phys. 23, 187–199 (1977).
Allen, R. J., Frenkel, D. & ten Wolde, P. R. Simulating rare events in equilibrium or nonequilibrium stochastic systems. J. Chem. Phys. 124, 024102 (2006).
Dellago, C., Bolhuis, P. G., Csajka, F. S. & Chandler, D. Transition path sampling and the calculation of rate constants. J. Chem. Phys. 108, 1964–1977 (1998).
Earl, D. J. & Deem, M. W. Parallel tempering: theory, applications, and new perspectives. Phys. Chem. Chem. Phys. 7, 3910–3916 (2005).
Dress, C. & Krauth, W. Cluster algorithm for hard spheres and related systems. J. Phys. A 28, L597–L601 (1995).
Heringa, J. R. & Blöte, H. W. J. Geometric cluster Monte Carlo simulation. Phys. Rev. E 57, 4976–4978 (1998).
Whitelam, S. & Geissler, P. L. Avoiding unphysical kinetic traps in Monte Carlo simulations of strongly attractive particles. J. Chem. Phys. 127, 154101 (2007).
Liu, J., Wilding, N. B. & Luijten, E. Simulation of phase transitions in highly asymmetric fluid mixtures. Phys. Rev. Lett. 97, 115705 (2006).
Sinkovits, D. W., Barr, S. A. & Luijten, E. Rejection-free Monte Carlo scheme for anisotropic particles. J. Chem. Phys. 136, 144111 (2012).
Bernard, E. P., Krauth, W. & Wilson, D. B. Event-chain Monte Carlo algorithms for hard-sphere systems. Phys. Rev. E 80, 056704 (2009).
Michel, M., Kapfer, S. C. & Krauth, W. Generalized event-chain Monte Carlo: constructing rejection-free global-balance algorithms from infinitesimal steps. J. Chem. Phys. 140, 054116 (2014).
Steinhardt, P. J., Nelson, D. R. & Ronchetti, M. Bond-orientational order in liquids and glasses. Phys. Rev. B 28, 784 (1983).
van Meel, J. A., Filion, L., Valeriani, C. & Frenkel, D. A parameter-free, solid-angle based, nearest-neighbor algorithm. J. Chem. Phys. 136, 234107 (2012).
Lechner, W. & Dellago, C. Accurate determination of crystal structures based on averaged local bond order parameters. J. Chem. Phys. 129, 114707 (2008).
Mickel, W., Kapfer, S. C., Schröder-Turk, G. E. & Mecke, K. Shortcomings of the bond orientational order parameters for the analysis of disordered particulate matter. J. Chem. Phys. 138, 044501 (2013).
Auer, S. & Frenkel, D. Prediction of absolute crystal-nucleation rate in hard-sphere colloids. Nature 409, 1020–1023 (2001).
Malins, A., Williams, S. R., Eggers, J. & Royall, C. P. Identification of structure in condensed matter with the topological cluster classification. J. Chem. Phys. 139, 234506 (2013).
Gantapara, A. P., de Graaf, J., van Roij, R. & Dijkstra, M. Phase diagram and structural diversity of a family of truncated cubes: degenerate close-packed structures and vacancy-rich states. Phys. Rev. Lett. 111, 015501 (2013).
Klotsa, D., Chen, E. R., Engel, M. & Glotzer, S. C. Intermediate crystalline structures of colloids in shape space. Soft Matter 14, 8692–8697 (2018).
Geiger, P. & Dellago, C. Neural networks for local structure detection in polymorphic systems. J. Chem. Phys. 139, 164105 (2013).
Dietz, C., Kretz, T. & Thoma, M. Machine-learning approach for local classification of crystalline structures in multiphase systems. Phys. Rev. E 96, 011301 (2017).
Boattini, E., Ram, M., Smallenburg, F. & Filion, L. Neural-network-based order parameters for classification of binary hard-sphere crystal structures. Mol. Phys. 116, 3066–3075 (2018).
DeFever, R. S., Targonski, C., Hall, S. W., Smith, M. C. & Sarupria, S. A generalized deep learning approach for local structure identification in molecular simulations. Chem. Sci. 10, 7503–7515 (2019).
Terao, T. A machine learning approach to analyze the structural formation of soft matter via image recognition. Soft Mater. 18, 215–227 (2020).
Schoenholz, S. S., Cubuk, E. D., Sussman, D. M., Kaxiras, E. & Liu, A. J. A structural approach to relaxation in glassy liquids. Nat. Phys. 12, 469–471 (2016).
Bapst, V. et al. Unveiling the predictive power of static structure in glassy systems. Nat. Phys. 16, 448–454 (2020).
Behler, J. Perspective: Machine learning potentials for atomistic simulations. J. Chem. Phys. 145, 170901 (2016).
Boattini, E., Bezem, N., Punnathanam, S. N., Smallenburg, F. & Filion, L. Modeling of many-body interactions between elastic spheres through symmetry functions. J. Chem. Phys. 153, 064902 (2020).
Dai, C. & Glotzer, S. C. Efficient phase diagram sampling by active learning. J. Phys. Chem. B 124, 1275–1284 (2020).
Reinhart, W. F., Long, A. W., Howard, M. P., Ferguson, A. L. & Panagiotopoulos, A. Z. Machine learning for autonomous crystal structure identification. Soft Matter 13, 4733–4745 (2017).
Reinhart, W. F. & Panagiotopoulos, A. Z. Automated crystal characterization with a fast neighborhood graph analysis method. Soft Matter 14, 6083–6089 (2018).
Jadrich, R., Lindquist, B. & Truskett, T. Unsupervised machine learning for detection of phase transitions in off-lattice systems. I. Foundations. J. Chem. Phys. 149, 194109 (2018).
Jadrich, R., Lindquist, B., Piñeros, W., Banerjee, D. & Truskett, T. Unsupervised machine learning for detection of phase transitions in off-lattice systems. II. Applications. J. Chem. Phys. 149, 194110 (2018).
Spellings, M. & Glotzer, S. C. Machine learning for crystal identification and discovery. AIChE J. 64, 2198–2206 (2018).
Boattini, E., Dijkstra, M. & Filion, L. Unsupervised learning for local structure detection in colloidal systems. J. Chem. Phys. 151, 154901 (2019).
Adorf, C. S., Moore, T. C., Melle, Y. J. & Glotzer, S. C. Analysis of self-assembly pathways with unsupervised machine learning algorithms. J. Phys. Chem. B 124, 69–78 (2019).
Bereau, T., Andrienko, D. & Kremer, K. Research update: Computational materials discovery in soft matter. APL Mater. 4, 053101 (2016).
Ferguson, A. L. Machine learning and data science in soft materials engineering. J. Phys.: Condens. Matter 30, 043002 (2017).
Wang, J. & Ferguson, A. Nonlinear machine learning in simulations of soft and biological materials. Mol. Simul. 44, 1090–1107 (2018).
Torquato, S. Inverse optimization techniques for targeted self-assembly. Soft Matter 5, 1157–1173 (2009).
Lindquist, B. A., Jadrich, R. B. & Truskett, T. M. Communication: Inverse design for self-assembly via on-the-fly optimization. J. Chem. Phys. 145, 11110 (2016).
Shell, M. S. The relative entropy is fundamental to multiscale and inverse thermodynamic problems. J. Chem. Phys. 129, 144108 (2008).
Piñeros, W. D., Lindquist, B. A., Jadrich, R. B. & Truskett, T. M. Inverse design of multicomponent assemblies. J. Chem. Phys. 148, 104509 (2018).
Lindquist, B. A., Jadrich, R. B., Piñeros, W. D. & Truskett, T. M. Inverse design of self-assembling Frank–Kasper phases and insights into emergent quasicrystals. J. Phys. Chem. B 122, 5547–5556 (2018).
Florescu, M., Torquato, S. & Steinhardt, P. J. Designer disordered materials with large, complete photonic band gaps. Proc. Natl Acad. Sci. USA 106, 20658–20663 (2009).
Geng, Y., van Anders, G., Dodd, P. M., Dshemuchadse, J. & Glotzer, S. C. Engineering entropy for the inverse design of colloidal crystals from hard shapes. Sci. Adv. 5, eaaw0514 (2019).
Miskin, M. Z., Khaira, G., de Pablo, J. J. & Jaeger, H. M. Turning statistical physics models into materials design engines. Proc. Natl Acad. Sci. USA 113, 34–39 (2016).
Kumar, R., Coli, G. M., Dijkstra, M. & Sastry, S. Inverse design of charged colloidal particle interactions for self assembly into specified crystal structures. J. Chem. Phys. 151, 084109 (2019).
Long, A. W. & Ferguson, A. L. Rational design of patchy colloids via landscape engineering. Mol. Syst. Des. Eng. 3, 49–65 (2018).
Ma, Y. & Ferguson, A. L. Inverse design of self-assembling colloidal crystals with omnidirectional photonic bandgaps. Soft Matter 15, 8808–8826 (2019).
Sherman, Z. M., Howard, M. P., Lindquist, B. A., Jadrich, R. B. & Truskett, T. M. Inverse methods for design of soft materials. J. Chem. Phys. 152, 140902 (2020).
Ou, Z., Wang, Z., Luo, B., Luijten, E. & Chen, Q. Kinetic pathways of crystallization at the nanoscale. Nat. Mater. 19, 450–455 (2020).
Wang, J. et al. Magic number colloidal clusters as minimum free energy structures. Nat. Commun. 9, 5259 (2018).
Henzie, J., Grünwald, M., Widmer-Cooper, A., Geissler, P. L. & Yang, P. Self-assembly of uniform polyhedral silver nanocrystals into densest packings and exotic superlattices. Nat. Mater 11, 131–137 (2012).
Chen, Q. et al. Supracolloidal reaction kinetics of Janus spheres. Science 331, 199–202 (2011).
Haji-Akbari, A. et al. Disordered, quasicrystalline and crystalline phases of densely packed tetrahedra. Nature 462, 773–777 (2009).
Ramananarivo, S., Ducrot, E. & Palacci, J. Activity-controlled annealing of colloidal monolayers. Nat. Commun. 10, 3380 (2019).
Sharp, T. A. et al. Machine learning determination of atomic dynamics at grain boundaries. Proc. Natl Acad. Sci. USA 115, 10943–10947 (2018).
Chen, W., Tan, A. R. & Ferguson, A. L. Collective variable discovery and enhanced sampling using autoencoders: innovations in network architecture and error function design. J. Chem. Phys. 149, 072312 (2018).
Gan, Z. & Xu, Z. Multiple-image treatment of induced charges in Monte Carlo simulations of electrolytes near a spherical dielectric interface. Phys. Rev. E 84, 016705 (2011).
Freed, K. F. Perturbative many-body expansion for electrostatic energy and field for system of polarizable charged spherical ions in a dielectric medium. J. Chem. Phys. 141, 034115 (2014).
Qin, J., de Pablo, J. J. & Freed, K. F. Image method for induced surface charge from many-body system of dielectric spheres. J. Chem. Phys. 145, 124903 (2016).
Maggs, A. & Rossetto, V. Local simulation algorithms for Coulomb interactions. Phys. Rev. Lett. 88, 196402 (2002).
Levitt, D. G. Electrostatic calculations for an ion channel. I. Energy and potential profiles and interactions between ions. Biophys. J. 22, 209–219 (1978).
Hoshi, H., Sakurai, M., Inoue, Y. & Chûjô, R. Medium effects on the molecular electronic structure. I. The formulation of a theory for the estimation of a molecular electronic structure surrounded by an anisotropic medium. J. Chem. Phys. 87, 1107–1115 (1987).
Bharadwaj, R., Windemuth, A., Sridharan, S., Honig, B. & Nicholls, A. The fast multipole boundary element method for molecular electrostatics: an optimal approach for large systems. J. Comput. Chem. 16, 898–913 (1995).
Allen, R., Hansen, J.-P. & Melchionna, S. Electrostatic potential inside ionic solutions confined by dielectrics: a variational approach. Phys. Chem. Chem. Phys. 3, 4177–4186 (2001).
Boda, D., Gillespie, D., Eisenberg, B., Nonner W., & Henderson, D. in Ionic Soft Matter: Modern Trends in Theory and Applications (eds Henderson, D. et al.) 19–43 (NATO Science Series II: Mathematics, Physics and Chemistry Vol. 206, Springer, 2005).
Tyagi, S. et al. An iterative, fast, linear-scaling method for computing induced charges on arbitrary dielectric boundaries. Phys. Chem. Chem. Phys. 3, 4177–4186 (2001).
Jadhao, V., Solis, F. J. & Olvera de la Cruz, M. Simulation of charged systems in heterogeneous dielectric media via a true energy functional. Phys. Rev. Lett. 109, 223905 (2012).
Barros, K., Sinkovits, D. & Luijten, E. Efficient and accurate simulation of dynamic dielectric objects. J. Chem. Phys. 140, 064903 (2014).
Barros, K. & Luijten, E. Dielectric effects in the self-assembly of binary colloidal aggregates. Phys. Rev. Lett. 113, 017801 (2014).
Gan, Z., Wang, Z., Jiang, S., Xu, Z. & Luijten, E. Efficient dynamic simulations of charged dielectric colloids through a novel hybrid method. J. Chem. Phys. 151, 024112 (2019).
Holland, J. H. Adaptation in Natural and Artificial Systems (MIT Press, 1992).
Oganov, A. R. & Glass, C. W. Crystal structure prediction using ab initio evolutionary techniques: principles and applications. J. Chem. Phys. 124, 244704 (2006).
Wang, Y., Lv, J., Zhu, L. & Ma, Y. Crystal structure prediction via particle-swarm optimization. Phys. Rev. B 82, 094116 (2010).
Amsler, M. & Goedecker, S. Crystal structure prediction using the minima hopping method. J. Chem. Phys. 133, 224104 (2010).
Wales, D. J. & Scheraga, H. A. Global optimization of clusters, crystals, and biomolecules. Science 285, 1368–1372 (1999).
Martoňák, R. et al. Simulation of structural phase transitions by metadynamics. Z. Kristallogr. Cryst. Mater. 220, 489–498 (2009).
Panagiotopoulos, A. Z. Direct determination of phase coexistence properties of fluids by Monte Carlo simulation in a new ensemble. Mol. Phys. 61, 813–826 (1987).
Ferrenberg, A. M. & Swendsen, R. H. Optimized Monte Carlo data analysis. Phys. Rev. Lett. 63, 1195–1198 (1989).
Potoff, J. J. & Panagiotopoulos, A. Z. Surface tension of the three-dimensional Lennard-Jones fluid from histogram-reweighting Monte Carlo simulations. J. Chem. Phys. 112, 6411–6415 (2000).
Acknowledgements
We thank Z. Wang for designing the figures. E.L. is supported by the Center for Bio-Inspired Energy Science (CBES), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Basic Energy Sciences BES, under award no. DE-SC0000989.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Materials thanks Emanuela Zaccarelli and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Dijkstra, M., Luijten, E. From predictive modelling to machine learning and reverse engineering of colloidal self-assembly. Nat. Mater. 20, 762–773 (2021). https://doi.org/10.1038/s41563-021-01014-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-021-01014-2
This article is cited by
-
Machine-learned coarse-grained potentials for particles with anisotropic shapes and interactions
npj Computational Materials (2024)
-
Visual simulation of opal using bond percolation through the weighted Voronoi diagram and the Ewald construction
The Visual Computer (2024)
-
Simultaneous and independent topological control of identical microparticles in non-periodic energy landscapes
Nature Communications (2023)
-
Machine learning for nanoplasmonics
Nature Nanotechnology (2023)
-
Resolution-enhanced X-ray fluorescence microscopy via deep residual networks
npj Computational Materials (2023)