Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque

Abstract

Electrical manipulation of magnetic materials by current-induced spin torque constitutes the basis of spintronics. Here, we show an unconventional response to spin–orbit torque of a non-collinear antiferromagnet Mn3Sn, which has attracted attention owing to its large anomalous Hall effect despite a vanishingly small net magnetization. In epitaxial heavy-metal/Mn3Sn heterostructures, we observe a characteristic fluctuation of the Hall resistance under the application of electric current. This observation is explained by a rotation of the chiral-spin structure of Mn3Sn driven by spin–orbit torque. We find that the variation of the magnitude of anomalous Hall effect fluctuation with sample size correlates with the number of magnetic domains in the Mn3Sn layer. In addition, the dependence of the critical current on Mn3Sn layer thickness reveals that spin–orbit torque generated by small current densities, below 20 MA cm−2, effectively acts on the chiral-spin structure even in Mn3Sn layers that are thicker than 20 nm. The results provide additional pathways for electrical manipulation of magnetic materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Sample layout and structural properties.
Fig. 2: Measurement set up and Hall resistance measurement under SOT.
Fig. 3: Calculated dynamics of chiral-spin structure under SOT.
Fig. 4: Size dependence of Hall resistance fluctuation.
Fig. 5: The tMn3Sn dependence of switching field and critical current density.

Similar content being viewed by others

Data availability

The data that support the findings of this work are available from the corresponding authors upon reasonable request.

References

  1. Myers, E. B. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).

    Article  CAS  Google Scholar 

  2. Chiba, D. et al. Magnetization vector manipulation by electric fields. Nature 455, 515–518 (2008).

    Article  CAS  Google Scholar 

  3. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  4. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    Article  CAS  Google Scholar 

  5. Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).

    Article  Google Scholar 

  6. Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834 (1999).

    Article  CAS  Google Scholar 

  7. Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).

    Article  Google Scholar 

  8. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  9. Fukami, S., Anekawa, T., Zhang, C. & Ohno, H. A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nat. Nanotechnol. 11, 621–625 (2016).

    Article  CAS  Google Scholar 

  10. Bodnar, S. Y., Kläui, M. & Jourdan, M. Writing and reading antiferromagnetic Mn2Au by Néel spin–orbit torques and large anisotropic magnetoresistance. Nat. Commun. 7, 55128 (2018).

    Google Scholar 

  11. Chen, X. Z. et al. Antidamping-torque-induced switching in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 120, 207204 (2018).

    Article  CAS  Google Scholar 

  12. Meinert, M., Graulich, D. & Matalla-Wagner, T. Electrical switching of antiferromagnetic Mn2Au and the role of thermal activation. Phys. Rev. Appl. 9, 064040 (2018).

    Article  CAS  Google Scholar 

  13. Moriyama, T., Oda, K., Ohkochi, T., Kimata, M. & Ono, T. Spin torque control of antiferromagnetic moments in NiO. Sci. Rep. 8, 14167 (2018).

    Article  CAS  Google Scholar 

  14. Gray, I. et al. Spin Seebeck imaging of spin-torque switching in antiferromagnetic Pt/NiO heterostructures. Phys. Rev. X 9, 041016 (2019).

    CAS  Google Scholar 

  15. Baldrati, L. et al. Mechanism of Néel order switching in antiferromagnetic thin films revealed by magnetotransport and direct imaging. Phys. Rev. Lett. 123, 177201 (2019).

    Article  CAS  Google Scholar 

  16. Schreiber, F. et al. Concurrent magneto-optical imaging and magneto-transport readout of electrical switching of insulating antiferromagnetic thin films. Appl. Phys. Lett. 117, 082401 (2020).

    Article  CAS  Google Scholar 

  17. Sass, P. M. et al. Magnetic imaging of domain walls in the antiferromagnetic topological insulator MnBi2Te4. Nano Lett. 20, 2609–2614 (2020).

    Article  CAS  Google Scholar 

  18. Meer, H. et al. Direct imaging of current-induced antiferromagnetic switching revealing a pure thermomagnetoelastic switching mechanism in NiO. Nano Lett. 21, 114–119 (2021).

    Article  CAS  Google Scholar 

  19. Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).

    Article  CAS  Google Scholar 

  20. Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).

    Article  CAS  Google Scholar 

  21. Železný, J., Wadley, P., Olejník, K., Hoffmann, A. & Ohno, H. Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 14, 220–228 (2018).

    Article  CAS  Google Scholar 

  22. Krén, E., Paitz, J., Zimmer, G. & Zsoldos, É. Study of the magnetic phase transformation in the Mn3Sn phase. Physica B+C 80, 226–230 (1975).

    Article  Google Scholar 

  23. Yamada, N., Sakai, H., Mori, H. & Ohoyama, T. Magnetic properties of ϵ-Mn3Ge. Physica B+C 149, 311–315 (1988).

    Article  CAS  Google Scholar 

  24. Yamaoka, T. Antiferromagnetism in γ-phase Mn-Ir alloys. J. Phys. Soc. Jpn 36, 445–450 (1974).

    Article  CAS  Google Scholar 

  25. Krén, E. et al. Magnetic structures and exchange interactions in the Mn-Pt system. Phys. Rev. 171, 574–585 (1968).

    Article  Google Scholar 

  26. Tomiyoshi, S. & Yamaguchi, Y. Magnetic structure and weak ferromagnetism of Mn3Sn studied by polarized neutron diffraction. J. Phys. Soc. Jpn 51, 2478–2486 (1982).

    Article  CAS  Google Scholar 

  27. Cable, J. W., Wakabayashi, N. & Radhakrishna, P. Magnetic excitations in the triangular antiferromagnets Mn3Sn and Mn3Ge. Phys. Rev. B 48, 6159–6166 (1993).

    Article  CAS  Google Scholar 

  28. Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).

    Article  CAS  Google Scholar 

  29. Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 108, 67001 (2014).

    Article  CAS  Google Scholar 

  30. Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).

    Article  CAS  Google Scholar 

  31. Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).

    Article  CAS  Google Scholar 

  32. Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).

    Article  CAS  Google Scholar 

  33. Yoon, J. et al. Crystal orientation and anomalous Hall effect of sputter-deposited non-collinear antiferromagnetic Mn3Sn thin films. Appl. Phys. Express 13, 013001 (2020).

    Article  CAS  Google Scholar 

  34. Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).

    Article  CAS  Google Scholar 

  35. Shibata, J., Tatara, G. & Kohno, H. Effect of spin current on uniform ferromagnetism: domain nucleation. Phys. Rev. Lett. 94, 076601 (2005).

    Article  CAS  Google Scholar 

  36. Yamane, Y., Ieda, J. & Sinova, J. Spin-transfer torques in antiferromagnetic textures: efficiency and quantification method. Phys. Rev. B 94, 054409 (2016).

    Article  CAS  Google Scholar 

  37. Fujita, H. Field-free, spin-current control of magnetization in non-collinear chiral antiferromagnets. Phys. Status Solidi RRL 11, 1600360 (2017).

    Article  CAS  Google Scholar 

  38. Yamane, Y., Gomonay, O. & Sinova, J. Dynamics of noncollinear antiferromagnetic textures driven by spin current injection. Phys. Rev. B 100, 054415 (2019).

    Article  CAS  Google Scholar 

  39. Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon. 12, 73–78 (2018).

    Article  CAS  Google Scholar 

  40. Liu, J. & Balents, L. Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: Mn3Sn/Ge. Phys. Rev. Lett. 119, 087202 (2017).

    Article  Google Scholar 

  41. Yu, J. et al. Long spin coherence length and bulk-like spin–orbit torque in ferrimagnetic multilayers. Nat. Mater. 18, 29–34 (2019).

    Article  CAS  Google Scholar 

  42. Hajiri, T., Ishino, S., Matsuura, K. & Asano, H. Electrical current switching of the noncollinear antiferromagnet Mn3GaN. Appl. Phys. Lett. 115, 052403 (2019).

    Article  CAS  Google Scholar 

  43. Shiota, Y. et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11, 39–43 (2012).

    Article  CAS  Google Scholar 

  44. Kanai, S. et al. Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Appl. Phys. Lett. 101, 122403 (2012).

    Article  CAS  Google Scholar 

  45. Duan, T. F. et al. Magnetic anisotropy of single-crystalline Mn3Sn in triangular and helix-phase states. Appl. Phys. Lett. 107, 082403 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank T. Dietl, J. Llandro, S. DuttaGupta, K. Furuya and R. Takechi for their technical support and fruitful discussion. The work was supported by the Japan Society for the Promotion of Science Kakenhi (no. 19H05622, no. 19J13405 and no. 20K22409), the Japan Society for the Promotion of Science Core-to-Core Program and Research Institute of Electrical Communication Cooperative Research Projects.

Author information

Authors and Affiliations

Authors

Contributions

Y.T, J.I., S.F. and H.O. planned the study. Y.T., J-Y.Y., R.I. and B.J. prepared the stacks. Y.T., R.I. and B.J. processed the stacks into devices. Y.T performed measurements and analysed the data with input from Y.Y., S.K., J.I. and S.F.; Y.Y. performed the calculation of the dynamics of the non-collinear antiferromagnet. All authors discussed the results. Y.T., Y.Y. and S.F. wrote the manuscript with input from B.J., S.K., J.I. and H.O.

Corresponding authors

Correspondence to Yutaro Takeuchi, Yuta Yamane or Shunsuke Fukami.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Mathias Kläui and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, Discussion and Table 1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takeuchi, Y., Yamane, Y., Yoon, JY. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nat. Mater. 20, 1364–1370 (2021). https://doi.org/10.1038/s41563-021-01005-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01005-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing