Abstract
Electrical manipulation of magnetic materials by current-induced spin torque constitutes the basis of spintronics. Here, we show an unconventional response to spin–orbit torque of a non-collinear antiferromagnet Mn3Sn, which has attracted attention owing to its large anomalous Hall effect despite a vanishingly small net magnetization. In epitaxial heavy-metal/Mn3Sn heterostructures, we observe a characteristic fluctuation of the Hall resistance under the application of electric current. This observation is explained by a rotation of the chiral-spin structure of Mn3Sn driven by spin–orbit torque. We find that the variation of the magnitude of anomalous Hall effect fluctuation with sample size correlates with the number of magnetic domains in the Mn3Sn layer. In addition, the dependence of the critical current on Mn3Sn layer thickness reveals that spin–orbit torque generated by small current densities, below 20 MA cm−2, effectively acts on the chiral-spin structure even in Mn3Sn layers that are thicker than 20 nm. The results provide additional pathways for electrical manipulation of magnetic materials.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Similar content being viewed by others
Data availability
The data that support the findings of this work are available from the corresponding authors upon reasonable request.
References
Myers, E. B. Current-induced switching of domains in magnetic multilayer devices. Science 285, 867–870 (1999).
Chiba, D. et al. Magnetization vector manipulation by electric fields. Nature 455, 515–518 (2008).
Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).
Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).
Dyakonov, M. I. & Perel, V. I. Current-induced spin orientation of electrons in semiconductors. Phys. Lett. A 35, 459–460 (1971).
Hirsch, J. E. Spin Hall effect. Phys. Rev. Lett. 83, 1834 (1999).
Edelstein, V. M. Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990).
Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).
Fukami, S., Anekawa, T., Zhang, C. & Ohno, H. A spin–orbit torque switching scheme with collinear magnetic easy axis and current configuration. Nat. Nanotechnol. 11, 621–625 (2016).
Bodnar, S. Y., Kläui, M. & Jourdan, M. Writing and reading antiferromagnetic Mn2Au by Néel spin–orbit torques and large anisotropic magnetoresistance. Nat. Commun. 7, 55128 (2018).
Chen, X. Z. et al. Antidamping-torque-induced switching in biaxial antiferromagnetic insulators. Phys. Rev. Lett. 120, 207204 (2018).
Meinert, M., Graulich, D. & Matalla-Wagner, T. Electrical switching of antiferromagnetic Mn2Au and the role of thermal activation. Phys. Rev. Appl. 9, 064040 (2018).
Moriyama, T., Oda, K., Ohkochi, T., Kimata, M. & Ono, T. Spin torque control of antiferromagnetic moments in NiO. Sci. Rep. 8, 14167 (2018).
Gray, I. et al. Spin Seebeck imaging of spin-torque switching in antiferromagnetic Pt/NiO heterostructures. Phys. Rev. X 9, 041016 (2019).
Baldrati, L. et al. Mechanism of Néel order switching in antiferromagnetic thin films revealed by magnetotransport and direct imaging. Phys. Rev. Lett. 123, 177201 (2019).
Schreiber, F. et al. Concurrent magneto-optical imaging and magneto-transport readout of electrical switching of insulating antiferromagnetic thin films. Appl. Phys. Lett. 117, 082401 (2020).
Sass, P. M. et al. Magnetic imaging of domain walls in the antiferromagnetic topological insulator MnBi2Te4. Nano Lett. 20, 2609–2614 (2020).
Meer, H. et al. Direct imaging of current-induced antiferromagnetic switching revealing a pure thermomagnetoelastic switching mechanism in NiO. Nano Lett. 21, 114–119 (2021).
Jungwirth, T., Marti, X., Wadley, P. & Wunderlich, J. Antiferromagnetic spintronics. Nat. Nanotechnol. 11, 231–241 (2016).
Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
Železný, J., Wadley, P., Olejník, K., Hoffmann, A. & Ohno, H. Spin transport and spin torque in antiferromagnetic devices. Nat. Phys. 14, 220–228 (2018).
Krén, E., Paitz, J., Zimmer, G. & Zsoldos, É. Study of the magnetic phase transformation in the Mn3Sn phase. Physica B+C 80, 226–230 (1975).
Yamada, N., Sakai, H., Mori, H. & Ohoyama, T. Magnetic properties of ϵ-Mn3Ge. Physica B+C 149, 311–315 (1988).
Yamaoka, T. Antiferromagnetism in γ-phase Mn-Ir alloys. J. Phys. Soc. Jpn 36, 445–450 (1974).
Krén, E. et al. Magnetic structures and exchange interactions in the Mn-Pt system. Phys. Rev. 171, 574–585 (1968).
Tomiyoshi, S. & Yamaguchi, Y. Magnetic structure and weak ferromagnetism of Mn3Sn studied by polarized neutron diffraction. J. Phys. Soc. Jpn 51, 2478–2486 (1982).
Cable, J. W., Wakabayashi, N. & Radhakrishna, P. Magnetic excitations in the triangular antiferromagnets Mn3Sn and Mn3Ge. Phys. Rev. B 48, 6159–6166 (1993).
Chen, H., Niu, Q. & MacDonald, A. H. Anomalous Hall effect arising from noncollinear antiferromagnetism. Phys. Rev. Lett. 112, 017205 (2014).
Kübler, J. & Felser, C. Non-collinear antiferromagnets and the anomalous Hall effect. Europhys. Lett. 108, 67001 (2014).
Nakatsuji, S., Kiyohara, N. & Higo, T. Large anomalous Hall effect in a non-collinear antiferromagnet at room temperature. Nature 527, 212–215 (2015).
Nayak, A. K. et al. Large anomalous Hall effect driven by a nonvanishing Berry curvature in the noncolinear antiferromagnet Mn3Ge. Sci. Adv. 2, e1501870 (2016).
Tsai, H. et al. Electrical manipulation of a topological antiferromagnetic state. Nature 580, 608–613 (2020).
Yoon, J. et al. Crystal orientation and anomalous Hall effect of sputter-deposited non-collinear antiferromagnetic Mn3Sn thin films. Appl. Phys. Express 13, 013001 (2020).
Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).
Shibata, J., Tatara, G. & Kohno, H. Effect of spin current on uniform ferromagnetism: domain nucleation. Phys. Rev. Lett. 94, 076601 (2005).
Yamane, Y., Ieda, J. & Sinova, J. Spin-transfer torques in antiferromagnetic textures: efficiency and quantification method. Phys. Rev. B 94, 054409 (2016).
Fujita, H. Field-free, spin-current control of magnetization in non-collinear chiral antiferromagnets. Phys. Status Solidi RRL 11, 1600360 (2017).
Yamane, Y., Gomonay, O. & Sinova, J. Dynamics of noncollinear antiferromagnetic textures driven by spin current injection. Phys. Rev. B 100, 054415 (2019).
Higo, T. et al. Large magneto-optical Kerr effect and imaging of magnetic octupole domains in an antiferromagnetic metal. Nat. Photon. 12, 73–78 (2018).
Liu, J. & Balents, L. Anomalous Hall effect and topological defects in antiferromagnetic Weyl semimetals: Mn3Sn/Ge. Phys. Rev. Lett. 119, 087202 (2017).
Yu, J. et al. Long spin coherence length and bulk-like spin–orbit torque in ferrimagnetic multilayers. Nat. Mater. 18, 29–34 (2019).
Hajiri, T., Ishino, S., Matsuura, K. & Asano, H. Electrical current switching of the noncollinear antiferromagnet Mn3GaN. Appl. Phys. Lett. 115, 052403 (2019).
Shiota, Y. et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11, 39–43 (2012).
Kanai, S. et al. Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Appl. Phys. Lett. 101, 122403 (2012).
Duan, T. F. et al. Magnetic anisotropy of single-crystalline Mn3Sn in triangular and helix-phase states. Appl. Phys. Lett. 107, 082403 (2015).
Acknowledgements
We thank T. Dietl, J. Llandro, S. DuttaGupta, K. Furuya and R. Takechi for their technical support and fruitful discussion. The work was supported by the Japan Society for the Promotion of Science Kakenhi (no. 19H05622, no. 19J13405 and no. 20K22409), the Japan Society for the Promotion of Science Core-to-Core Program and Research Institute of Electrical Communication Cooperative Research Projects.
Author information
Authors and Affiliations
Contributions
Y.T, J.I., S.F. and H.O. planned the study. Y.T., J-Y.Y., R.I. and B.J. prepared the stacks. Y.T., R.I. and B.J. processed the stacks into devices. Y.T performed measurements and analysed the data with input from Y.Y., S.K., J.I. and S.F.; Y.Y. performed the calculation of the dynamics of the non-collinear antiferromagnet. All authors discussed the results. Y.T., Y.Y. and S.F. wrote the manuscript with input from B.J., S.K., J.I. and H.O.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Materials thanks Mathias Kläui and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–10, Discussion and Table 1.
Rights and permissions
About this article
Cite this article
Takeuchi, Y., Yamane, Y., Yoon, JY. et al. Chiral-spin rotation of non-collinear antiferromagnet by spin–orbit torque. Nat. Mater. 20, 1364–1370 (2021). https://doi.org/10.1038/s41563-021-01005-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-021-01005-3
This article is cited by
-
Coherent antiferromagnetic spintronics
Nature Materials (2023)
-
Evolution of anisotropic magnetic properties through helix-to-fan transition in helical antiferromagnetic EuCo2As2
Communications Physics (2023)
-
Handedness anomaly in a non-collinear antiferromagnet under spin–orbit torque
Nature Materials (2023)
-
Field-free spin-orbit torque switching assisted by in-plane unconventional spin torque in ultrathin [Pt/Co]N
Nature Communications (2023)
-
Octupole-driven magnetoresistance in an antiferromagnetic tunnel junction
Nature (2023)