Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways


A critical challenge for next-generation lithium-based batteries lies in development of electrolytes that enable thermal safety along with the use of high-energy-density electrodes. We describe molecular ionic composite electrolytes based on an aligned liquid crystalline polymer combined with ionic liquids and concentrated Li salt. This high strength (200 MPa) and non-flammable solid electrolyte possesses outstanding Li+ conductivity (1 mS cm−1 at 25 °C) and electrochemical stability (5.6 V versus Li|Li+) while suppressing dendrite growth and exhibiting low interfacial resistance (32 Ω cm2) and overpotentials (≤120 mV at 1 mA cm−2) during Li symmetric cell cycling. A heterogeneous salt doping process modifies a locally ordered polymer–ion assembly to incorporate an inter-grain network filled with defective LiFSI and LiBF4 nanocrystals, strongly enhancing Li+ conduction. This modular material fabrication platform shows promise for safe and high-energy-density energy storage and conversion applications, incorporating the fast transport of ceramic-like conductors with the superior flexibility of polymer electrolytes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Fabrication processes to form LiMICs.
Fig. 2: X-ray diffraction patterns of RMIC and LiMIC.
Fig. 3: Chemical identification, diffusion coefficients, activation energies and transport mechanism in RMICs and LiMICs.
Fig. 4: Ionic conductivity, activation energy, Li+ transference number, electrochemical window, Li symmetric cell cycling performance and interfacial charge-transfer resistance in MICs.
Fig. 5: Thermal and mechanical properties of RMICs and LiMICs.
Fig. 6: Voltage–time profiles for Li|Li symmetric cells incorporating LiMICs at ambient temperature.

Data availability

All data generated and analysed in this study are included in this published article and its Supplementary Information file and are also available from the corresponding author on reasonable request. Source data are provided with this paper.


  1. 1.

    Wang, Y. et al. Highly conductive and thermally stable ion gels with tunable anisotropy and modulus. Adv. Mater. 28, 2571–2578 (2016) .

    CAS  Article  Google Scholar 

  2. 2.

    Christie, A. M., Lilley, S. J., Staunton, E., Andreev, Y. G. & Bruce, P. G. Increasing the conductivity of crystalline polymer electrolytes. Nature 433, 50–53 (2005).

    CAS  Article  Google Scholar 

  3. 3.

    Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    CAS  Article  Google Scholar 

  4. 4.

    Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    Lu, Y. Y., Tu, Z. Y. & Archer, L. A. Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. Nat. Mater. 13, 961–969 (2014).

    CAS  Article  Google Scholar 

  6. 6.

    Qian, J. F. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

  7. 7.

    Bruce, P. G., Freunberger, S. A., Hardwick, L. J. & Tarascon, J. M. Erratum: Li–O2 and Li–S batteries with high energy storage. Nat. Mater. 11, 172 (2012).

  8. 8.

    Krause, A. et al. High area capacity lithium-sulfur full-cell battery with prelitiathed silicon nanowire-carbon anodes for long cycling stability. Sci. Rep. 6, 27982 (2016).

    CAS  Article  Google Scholar 

  9. 9.

    Lu, J. et al. A lithium–oxygen battery based on lithium superoxide. Nature 529, 377–382 (2016).

    CAS  Article  Google Scholar 

  10. 10.

    Maier, J. Nanoionics: ion transport and electrochemical storage in confined systems. Nat. Mater. 4, 805–815 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    Sakuda, A., Hayashi, A. & Tatsumisago, M. Sulfide solid electrolyte with favorable mechanical property for all-solid-state lithium battery. Sci. Rep. 3, 2261 (2013).

    Article  Google Scholar 

  12. 12.

    Elia, G. A. et al. An advanced lithium–air battery exploiting an ionic liquid-based electrolyte. Nano Lett. 14, 6572–6577 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Bostwick, J. E. et al. Ion transport and mechanical properties of non-crystallizable molecular ionic composite electrolytes. Macromolecules 53, 1405–1414 (2020).

    CAS  Article  Google Scholar 

  14. 14.

    Fox, R. J. et al. Nanofibrillar ionic polymer composites enable high-modulus ion-conducting membranes. ACS Appl. Mater. Interfaces 11, 40551–40563 (2019).

    CAS  Article  Google Scholar 

  15. 15.

    Yu, Z., He, Y. D., Wang, Y., Madsen, L. A. & Qiao, R. Molecular structure and dynamics of ionic liquids in a rigid-rod polyanion-based ion gel. Langmuir 33, 322–331 (2017).

    CAS  Article  Google Scholar 

  16. 16.

    Wang, Y. et al. Double helical conformation and extreme rigidity in a rodlike polyelectrolyte. Nat. Commun. 10, 801 (2019).

    Article  CAS  Google Scholar 

  17. 17.

    Wang, Y., Gao, J., Dingemans, T. J. & Madsen, L. A. Molecular alignment and ion transport in rigid rod polyelectrolyte solutions. Macromolecules 47, 2984–2992 (2014).

    CAS  Article  Google Scholar 

  18. 18.

    Lodge, T. P. A unique platform for materials design. Science 321, 50–51 (2008).

    CAS  Article  Google Scholar 

  19. 19.

    Lu, Y. Y., Korf, K., Kambe, Y., Tu, Z. Y. & Archer, L. A. Ionic-liquid–nanoparticle hybrid electrolytes: applications in lithium metal batteries. Angew. Chem. Int. Ed. 53, 488–492 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Wu, F. et al. “Liquid-in-solid” and “solid-in-liquid” electrolytes with high rate capacity and long cycling life for lithium-ion batteries. Chem. Mater. 28, 848–856 (2016).

    CAS  Article  Google Scholar 

  21. 21.

    Armand, M., Endres, F., MacFarlane, D. R., Ohno, H. & Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater. 8, 621–629 (2009).

    CAS  Article  Google Scholar 

  22. 22.

    Ueki, T. & Watanabe, M. Macromolecules in ionic liquids: progress, challenges, and opportunities. Macromolecules 41, 3739–3749 (2008).

    CAS  Article  Google Scholar 

  23. 23.

    Horowitz, A. I. & Panzer, M. J. High-performance, mechanically compliant silica-based ionogels for electrical energy storage applications. J. Mater. Chem. 22, 16534–16539 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    Lodge, T. P. & Ueki, T. Mechanically tunable, readily processable ion gels by self-assembly of block copolymers in ionic liquids. Acc. Chem. Res 49, 2107–2114 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    le Bideau, J., Ducros, J. B., Soudan, P. & Guyomard, D. Solid-state electrode materials with ionic-liquid properties for energy storage: the lithium solid-state ionic-liquid concept. Adv. Funct. Mater. 21, 4073–4078 (2011).

    Article  CAS  Google Scholar 

  26. 26.

    Bhattacharyya, A. J., Dolle, M. & Maier, J. Improved Li-battery electrolytes by heterogeneous doping of nonaqueous Li-salt solutions. Electrochem. Solid State Lett. 7, A432–A434 (2004).

    CAS  Article  Google Scholar 

  27. 27.

    MacFarlane, D. R. & Forsyth, M. Plastic crystal electrolyte materials: new perspectives on solid state ionics. Adv. Mater. 13, 957–966 (2001).

    CAS  Article  Google Scholar 

  28. 28.

    Alarco, P. J., Abu-Lebdeh, Y. & Armand, M. Highly conductive, organic plastic crystals based on pyrazolium imides. Solid State Ion. 175, 717–720 (2004).

    CAS  Article  Google Scholar 

  29. 29.

    Matsumoto, H. et al. Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI]. J. Power Sources 160, 1308–1313 (2006).

    CAS  Article  Google Scholar 

  30. 30.

    Zaghib, K. et al. Safe Li-ion polymer batteries for HEV applications. J. Power Sources 134, 124–129 (2004).

    CAS  Article  Google Scholar 

  31. 31.

    Basile, A., Bhatt, A. I. & O’Mullane, A. P. Stabilizing lithium metal using ionic liquids for long-lived batteries. Nat. Commun. 7, ncomms11794 (2016).

  32. 32.

    Yoon, H., Howlett, P. C., Best, A. S., Forsyth, M. & MacFarlane, D. R. Fast charge/discharge of Li metal batteries using an ionic liquid electrolyte. J. Electrochem. Soc. 160, A1629–A1637 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    Yoon, H., Best, A. S., Forsyth, M., MacFarlane, D. R. & Howlett, P. C. Physical properties of high Li-ion content N-propyl-N-methylpyrrolidinium bis(fluorosulfonyl)imide based ionic liquid electrolytes. Phys. Chem. Chem. Phys. 17, 4656–4663 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    Kim, O., Kim, K., Choi, U. H. & Park, M. J. Tuning anhydrous proton conduction in single-ion polymers by crystalline ion channels. Nat. Commun. 9, 5029 (2018).

    Article  CAS  Google Scholar 

  35. 35.

    Patterson, A. L. The Scherrer formula for X-ray particle size determination. Phys. Rev. 56, 978–982 (1939).

    CAS  Article  Google Scholar 

  36. 36.

    Levitt, M. H. Spin Dynamics: Basics of Nuclear Magnetic Resonance (Wiley, 2001).

  37. 37.

    Marple, M., Aitken, B., Kim, S. & Sen, S. Fast Li-ion dynamics in stoichiometric Li2S–Ga2Se3–GeSe2 glasses. Chem. Mater. 29, 8704–8710 (2017).

  38. 38.

    Kidd, B. E., Forbey, S. J., Steuber, F. W., Moore, R. B. & Madsen, L. A. Multiscale lithium and counterion transport in an electrospun polymer-gel electrolyte. Macromolecules 48, 4481–4490 (2015).

    CAS  Article  Google Scholar 

  39. 39.

    Kidd, B. E., Lingwood, M. D., Lee, M., Gibson, H. W. & Madsen, L. A. Cation and anion transport in a dicationic imidazolium-based plastic crystal ion conductor. J. Phys. Chem. B 118, 2176–2185 (2014).

    CAS  Article  Google Scholar 

  40. 40.

    Lingwood, M. D. et al. Unraveling the local energetics of transport in a polymer ion conductor. Chem. Commun. 49, 4283–4285 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    Hou, J. B., Zhang, Z. Y. & Madsen, L. A. Cation/anion associations in ionic liquids modulated by hydration and ionic medium. J. Phys. Chem. B 115, 4576–4582 (2011).

    CAS  Article  Google Scholar 

  42. 42.

    Simons, T. J. et al. Influence of Zn2+ and water on the transport properties of a pyrrolidinium dicyanamide ionic liquid. J. Phys. Chem. B 118, 4895–4905 (2014).

    CAS  Article  Google Scholar 

  43. 43.

    Jin, L. et al. Structure and transport properties of a plastic crystal ion conductor: diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate. J. Am. Chem. Soc. 134, 9688–9697 (2012).

    CAS  Article  Google Scholar 

  44. 44.

    Zhu, H., MacFarlane, D. R., Pringle, J. M. & Forsyth, M. Organic ionic plastic crystals as solid-state electrolytes. Trends Chem. 1, 126–140 (2019).

    CAS  Article  Google Scholar 

  45. 45.

    MacFarlane, D. R. et al. Ionic liquids and their solid-state analogues as materials for energy generation and storage. Nat. Rev. Mater. 1, 15005 (2016).

    CAS  Article  Google Scholar 

  46. 46.

    Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017).

    CAS  Article  Google Scholar 

  47. 47.

    Kerner, M., Plylahan, N., Scheers, J. & Johansson, P. Thermal stability and decomposition of lithium bis(fluorosulfonyl)imide (LiFSI) salts. RSC Adv. 6, 23327–23334 (2016).

    CAS  Article  Google Scholar 

  48. 48.

    Zhao, Q., Liu, X., Stalin, S., Khan, K. & Archer, L. A. Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries. Nat. Energy 4, 365–373 (2019).

    CAS  Article  Google Scholar 

  49. 49.

    Gao, J. W. et al. Water and sodium transport and liquid crystalline alignment in a sulfonated aramid membrane. J. Membr. Sci. 489, 194–203 (2015).

    CAS  Article  Google Scholar 

  50. 50.

    Li, J., Park, J. K., Moore, R. B. & Madsen, L. A. Linear coupling of alignment with transport in a polymer electrolyte membrane. Nat. Mater. 10, 507–511 (2011).

    CAS  Article  Google Scholar 

Download references


This work was supported primarily by the US National Science Foundation under awards DMR 1507764 and 1810194 and in part by the US Department of Energy under award EE0008860. We also gratefully thank C. Slebodnick at the Virginia Tech Crystallography Lab for assistance with X-ray diffraction analysis.

Author information




Y.W. designed and executed all major experiments and composed and edited article draughts. X.W., R.K., L.J. and M.F. performed and assisted with electrochemistry and impedance experiments and contributed written sections and editing to the article. C.J.Z. performed SSNMR experiments and contributed written sections and editing to the article. W.H.K. analysed the X-ray diffraction data and contributed written sections to the article. T.J.D. modified and supplied the polymer, conceived experiments and contributed written sections and editing to the article. L.A.M. conceived ideas, oversaw experiments, and composed and edited the article.

Corresponding author

Correspondence to Louis A. Madsen.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information: Nature Materials thanks Fannie Alloin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Notes 1–12 and Tables 1–4.

Source data

Source Data Fig. 2e,f

X-ray diffraction pattern and refinement results.

Source Data Fig. 3d–f,h

Diffusion and activation energy data.

Source Data Fig. 4a–f

Electrochemical data.

Source Data Fig. 5a,b

Thermal and mechanical data.

Source Data Fig. 6c,f

Li symmetric cell and energy-dispersive X-ray data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zanelotti, C.J., Wang, X. et al. Solid-state rigid-rod polymer composite electrolytes with nanocrystalline lithium ion pathways. Nat. Mater. (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing