Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Designing and controlling the properties of transition metal oxide quantum materials


This Perspective addresses the design, creation, characterization and control of synthetic quantum materials with strong electronic correlations. We show how emerging synergies between theoretical/computational approaches and materials design/experimental probes are driving recent advances in the discovery, understanding and control of new electronic behaviour in materials systems with interesting and potentially technologically important properties. The focus here is on transition metal oxides, where electronic correlations lead to a myriad of functional properties including superconductivity, magnetism, Mott transitions, multiferroicity and emergent behaviour at picoscale-designed interfaces. Current opportunities and challenges are also addressed, including possible new discoveries of non-equilibrium phenomena and optical control of correlated quantum phases of transition metal oxides.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Interplay of theory and experiment.
Fig. 2: Metal–insulator transition in nickelates.
Fig. 3: Non-equilibrium superconductivity in YBa2Cu3O6 + x and in K3C60.


  1. 1.

    Choi, W. S. et al. Atomic layer engineering of perovskite oxides for chemically sharp heterointerfaces. Adv. Mater. 24, 6423–6428 (2012).

    CAS  Article  Google Scholar 

  2. 2.

    Lei, Q. et al. Constructing oxide interfaces and heterostructures by atomic layer-by-layer laser molecular beam epitaxy. npj Quantum Mater. 2, 10 (2017).

  3. 3.

    Muller, D. A. Structure and bonding at the atomic scale by scanning transmission electron microscopy. Nat. Mater. 8, 263–270 (2009).

    CAS  Article  Google Scholar 

  4. 4.

    Disa, A. S., Frederick, J. W. & Charles, H. A. High‐resolution crystal truncation rod scattering: application to ultrathin layers and buried interfaces. Adv. Mater. Interfaces 7, 1901772 (2020).

    Article  Google Scholar 

  5. 5.

    Ament, L. J. P., van Veenendaal, M., Devereaux, T. P., Hill, J. P. & van den Brink, J. Resonant inelastic x-ray scattering studies of elementary excitations. Rev. Mod. Phys. 83, 705 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    Kukreja, R. et al. Orbital domain dynamics in magnetite below the Verwey transition. Phys. Rev. Lett. 121, 177601 (2018).

  7. 7.

    Damascelli, A., Hussain, Z. & Shen, Z.-X. Angle-resolved photoemission studies of the cuprate superconductors. Rev. Mod. Phys. 75, 473–541 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    Huang, B.-C. et al. Mapping band alignment across complex oxide heterointerfaces. Phys. Rev. Lett. 109, 246807 (2012).

  9. 9.

    Dean, M. P. M. et al. Ultrafast energy- and momentum-resolved dynamics of magnetic correlations in the photo-doped Mott insulator Sr2IrO4. Nat. Mater. 15, 601–605 (2016).

  10. 10.

    Zhong, W., Vanderbilt, D. & Rabe, K. M. First-principles theory of ferroelectric phase transitions for perovskites: the case of BaTiO3. Phys. Rev. B 52, 6301–6312 (1995).

  11. 11.

    Georges, A., Kotliar, G., Krauth, W. & Rozenberg, M. J. Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions. Rev. Mod. Phys. 68, 13–125 (1996).

    CAS  Article  Google Scholar 

  12. 12.

    Kotliar, G. et al. Electronic structure calculations with dynamical mean-field theory. Rev. Mod. Phys. 78, 865–951 (2006).

    CAS  Google Scholar 

  13. 13.

    Neaton, J. B. & Rabe, K. M. Theory of polarization enhancement in epitaxial BaTiO3/SrTiO3 superlattices. Appl. Phys. Lett. 82, 1586–1588 (2003).

    CAS  Article  Google Scholar 

  14. 14.

    Lee, J. H. et al. A strong ferroelectric ferromagnet created by means of spin–lattice coupling. Nature 466, 954–958 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    Drozdov, A. P., Eremets, M. I., Troyan, I. A., Ksenofontov, V. & Shylin, S. I. Conventional superconductivity at 203 kelvin at high pressures in the sulfur hydride system. Nature 525, 73–76 (2015).

    CAS  Article  Google Scholar 

  16. 16.

    Onida, G., Reining, L. & Rubio, A. Electronic excitations: density-functional versus many-body Green’s-function approaches. Rev. Mod. Phys. 74, 601–659 (2002).

    CAS  Article  Google Scholar 

  17. 17.

    Varignon, J., Bibes, M. & Zunger, A. Origin of band gaps in 3d perovskite oxides. Nat. Commun. 10, 1658 (2019).

  18. 18.

    Imada, M., Fujimori, A. & Tokura, Y. Metal–insulator transitions. Rev. Mod. Phys. 70, 1039–1263 (1998).

    CAS  Article  Google Scholar 

  19. 19.

    Stewart, G. R. Heavy-fermion systems. Rev. Mod. Phys. 56, 755–787 (1984).

    CAS  Article  Google Scholar 

  20. 20.

    Biermann, S., Aryasetiawan, F. & Georges, A. First-principles approach to the electronic structure of strongly correlated systems: combining the GW approximation and dynamical mean-field theory. Phys. Rev. Lett. 90, 086402 (2003).

  21. 21.

    Sun, P. & Kotliar, G. Extended dynamical mean-field theory and GW method. Phys. Rev. B 66, 085120 (2002).

  22. 22.

    Rusakov, A. A., Iskakov, S., Tran, L. N. & Zgid, D. Self-energy embedding theory (SEET) for periodic systems. J. Chem. Theory Comput. 15, 229–240 (2018).

    Article  CAS  Google Scholar 

  23. 23.

    Knizia, G. & Chan, G. K.-L. Density matrix embedding: a simple alternative to dynamical mean-field theory. Phys. Rev. Lett. 109, 186404 (2012).

  24. 24.

    Zhu, T., Cui, Z.-H. & Chan, G. K.-L. Efficient formulation of ab initio quantum embedding in periodic systems: dynamical mean-field theory. J. Chem. Theory Comput. 16, 141–153 (2019).

    Article  CAS  Google Scholar 

  25. 25.

    Nilsson, F., Boehnke, Werner, L. P. & Aryasetiawan, F. Multitier self-consistent GW + EDMFT. Phys. Rev. Mater. 1, 043803 (2017).

  26. 26.

    Choi, S., Semon, P., Kang, B., Kutepov, A. & Kotliar., G. ComDMFT: a massively parallel computer package for the electronic structure of correlated-electron systems. Comput. Phys. Commun. 244, 277–294 (2019).

    CAS  Article  Google Scholar 

  27. 27.

    Foulkes, W. M. C., Mitas, L., Needs, R. J. & Rajagopal, G. Quantum Monte Carlo simulations of solids. Rev. Mod. Phys. 73, 33–83 (2001).

    CAS  Article  Google Scholar 

  28. 28.

    Schollwöck, U. The density-matrix renormalization group. Rev. Mod. Phys. 77, 259–315 (2005).

    Article  CAS  Google Scholar 

  29. 29.

    Mcclain, J., Sun, Q., Chan, G. K.-L. & Berkelbach, T. C. Gaussian-based coupled-cluster theory for the ground-state and band structure of solids. J. Chem. Theory Comput. 13, 1209–1218 (2017).

    CAS  Article  Google Scholar 

  30. 30.

    Booth, G. H., Thom, A. J. W. & Alavi, A. Fermion Monte Carlo without fixed nodes: a game of life, death, and annihilation in Slater determinant space. J. Chem. Phys. 131, 054106 (2009).

    Article  CAS  Google Scholar 

  31. 31.

    Medarde, M. L. Structural, magnetic and electronic properties of RNiO3 perovskites (R = rare earth). J. Phys. Condens. Matter 9, 1679–1707 (1997).

    CAS  Article  Google Scholar 

  32. 32.

    Post, K. W. et al. Coexisting first- and second-order electronic phase transitions in a correlated oxide. Nat. Phys. 14, 1056–1061 (2018).

    CAS  Article  Google Scholar 

  33. 33.

    Mattoni, G. et al. Striped nanoscale phase separation at the metal–insulator transition of heteroepitaxial nickelates. Nat. Commun. 7, 13141 (2016).

  34. 34.

    Mizokawa, T., Khomskii, D. I. & Sawatzky, G. A. Spin and charge ordering in self-doped Mott insulators. Phys. Rev. B 61, 11263–11266 (2000).

    CAS  Article  Google Scholar 

  35. 35.

    Mazin, I. I. et al. Charge ordering as alternative to Jahn–Teller distortion. Phys. Rev. Lett. 98, 176406 (2007).

  36. 36.

    Park, H., Millis, A. J. & Marianetti, C. A. Site-selective Mott transition in rare-earth-element nickelates. Phys. Rev. Lett. 109, 156402 (2012).

  37. 37.

    Seth, P. et al. Renormalization of effective interactions in a negative charge transfer insulator. Phys. Rev. B 96, 205139 (2017).

  38. 38.

    Peil, O. E., Hampel, A., Ederer, C. & Georges, A. Mechanism and control parameters of the coupled structural and metal–insulator transition in nickelates. Phys. Rev. B 99, 245127 (2019).

  39. 39.

    Middey, S. et al. Physics of ultrathin films and heterostructures of rare-earth nickelates. Annu. Rev. Mater. Res. 46, 305–334 (2016).

    CAS  Article  Google Scholar 

  40. 40.

    Mackenzie, A. P., Scaffidi, T., Hicks, C. W. & Maeno, Y. Even odder after twenty-three years: the superconducting order parameter puzzle of Sr2RuO4. npj Quantum Mater. 2, 40 (2017).

  41. 41.

    Nakatsuji, S. et al. Heavy-mass Fermi liquid near a ferromagnetic instability in layered ruthenates. Phys. Rev. Lett. 90, 137202 (2003).

  42. 42.

    Fradkin, E., Kivelson, S. A., Lawler, M. J., Eisenstein, J. P. & Mackenzie, A. P. Nematic Fermi fluids in condensed matter physics. Annu. Rev. Condens. Matter Phys. 1, 153–178 (2010).

    CAS  Article  Google Scholar 

  43. 43.

    Lei, S. et al. Observation of quasi-two-dimensional polar domains and ferroelastic switching in a metal, Ca3Ru2O7. Nano Lett. 18, 3088–3095 (2018).

    CAS  Article  Google Scholar 

  44. 44.

    Nakamura, F. et al. Electric-field-induced metal maintained by current of the Mott insulator Ca2RuO4. Sci. Rep. 3, 2536 (2013).

  45. 45.

    Dang, H. T., Mravlje, J., Georges, A. & Millis, A. J. Electronic correlations, magnetism, and Hund’s rule coupling in the ruthenium perovskites SrRuO3 and CaRuO3. Phys. Rev. B 91, 195149 (2015).

  46. 46.

    Han, Q., Dang, H. T. & Millis, A. J. Ferromagnetism and correlation strength in cubic barium ruthenate in comparison to strontium and calcium ruthenate: a dynamical mean-field study. Phys. Rev. B 93, 155103 (2016).

  47. 47.

    Tamai, A. et al. High-resolution photoemission on Sr2RuO4 reveals correlation-enhanced effective spin–orbit coupling and dominantly local self-energies. Phys. Rev. X 9, 021048 (2019).

  48. 48.

    Tyler, A. W., Mackenzie, A. P., Nishizaki, S. & Maeno, Y. High-temperature resistivity of Sr2RuO4: bad metallic transport in a good metal. Phys. Rev. B 58, R10107(R) (1998).

  49. 49.

    Bergemann, C., Mackenzie, A. P., Julian, S. R., Forsythe, D. & Ohmichi, E. Quasi-two-dimensional Fermi liquid properties of the unconventional superconductor Sr2RuO4. Adv. Phys. 52, 639–725 (2003).

    CAS  Article  Google Scholar 

  50. 50.

    Mravlje, J. et al. Coherence–incoherence crossover and the mass-renormalization puzzles in Sr2RuO4. Phys. Rev. Lett. 106, 096401 (2011).

  51. 51.

    Wang, Y. et al. Global phase diagram of a spin-orbital Kondo impurity model and the suppression of Fermi-liquid scale. Phys. Rev. Lett. 124, 136406 (2020).

  52. 52.

    Horvat, A., Žitko, R. & Mravlje, J. Spin–orbit coupling in three-orbital Kanamori impurity model and its relevance for transition-metal oxides. Phys. Rev. B 96, 085122 (2017).

  53. 53.

    Dietl, C. et al. Tailoring the electronic properties of Ca2RuO4 via epitaxial strain. Appl. Phys. Lett. 112, 031902 (2018).

    Article  CAS  Google Scholar 

  54. 54.

    Han, Q. & Millis, A. Lattice energetics and correlation-driven metal–insulator transitions: the case of Ca2RuO4. Phys. Rev. Lett. 121, 067601 (2018).

  55. 55.

    Gorelov, E. et al. Nature of the Mott transition in Ca2RuO4. Phys. Rev. Lett. 104, 226401 (2010).

  56. 56.

    Hao, H. et al. Metal–insulator and magnetic phase diagram of Ca2RuO4 from auxiliary field quantum Monte Carlo and dynamical mean field theory. Phys. Rev. B 101, 235110 (2020).

    CAS  Article  Google Scholar 

  57. 57.

    Anisimov, V. I., Bukhvalov, D. & Rice, T. M. Electronic structure of possible nickelate analogs to the cuprates. Phys. Rev. B 59, 7901–7906 (1999).

    CAS  Article  Google Scholar 

  58. 58.

    Chaloupka, J. & Khaliullin, G. Orbital order and possible superconductivity in LaNiO3/LaMO3 superlattices. Phys. Rev. Lett. 100, 016404 (2008).

  59. 59.

    Benckiser, E. et al. Orbital reflectometry of oxide heterostructures. Nat. Mater. 10, 189–193 (2011).

    CAS  Article  Google Scholar 

  60. 60.

    Kumah, D. P. et al. Tuning the structure of nickelates to achieve two-dimensional electron conduction. Adv. Mater. 26, 1935–1940 (2014).

    CAS  Article  Google Scholar 

  61. 61.

    Fowlie, J. et al. Conductivity and local structure of LaNiO3 thin films. Adv. Mater. 29, 1605197 (2017).

    Article  CAS  Google Scholar 

  62. 62.

    Han, M. J., Wang, X., Marianetti, C. A. & Millis, A. J. Erratum: Dynamical mean-field theory of nickelate superlattices [Phys. Rev. Lett. 107, 206804 (2011)]. Phys. Rev. Lett. 110, 179904 (2013).

  63. 63.

    Disa, A. S. et al. Orbital engineering in symmetry-breaking polar heterostructures. Phys. Rev. Lett. 114, 026801 (2015).

  64. 64.

    Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).

    CAS  Article  Google Scholar 

  65. 65.

    Först, M. et al. Nonlinear phononics as an ultrafast route to lattice control. Nat. Phys. 7, 854–856 (2011).

    Article  CAS  Google Scholar 

  66. 66.

    Subedi, A., Cavalleri, A. & Georges, A. Theory of nonlinear phononics for coherent light control of solids. Phys. Rev. B 89, 220301(R) (2014).

  67. 67.

    Rini, M. et al. Control of the electronic phase of a manganite by mode-selective vibrational excitation. Nature 449, 72–74 (2007).

    CAS  Article  Google Scholar 

  68. 68.

    Disa, A. S. et al. Polarizing an antiferromagnet by optical engineering of the crystal field. Nat. Phys. 16, 937–941 (2020).

    CAS  Article  Google Scholar 

  69. 69.

    Nova, T. F., Disa, A. S., Fechner, M. & Cavalleri, A. Metastable ferroelectricity in optically strained SrTiO3. Science 364, 1075–1079 (2019).

    CAS  Article  Google Scholar 

  70. 70.

    Juraschek, D. M., Fechner, M. & Spaldin, N. A. Ultrafast structure switching through nonlinear phononics. Phys. Rev. Lett. 118, 054101 (2017).

  71. 71.

    Gu, M. & Rondinelli, J. M. Nonlinear phononic control and emergent magnetism in Mott insulating titanates. Phys. Rev. B 98, 024102 (2018).

  72. 72.

    Fausti, D. et al. Light-induced superconductivity in a stripe-ordered cuprate. Science 331, 189–191 (2011).

    CAS  Article  Google Scholar 

  73. 73.

    Mankowsky, R. et al. Nonlinear lattice dynamics as a basis for enhanced superconductivity in YBa2Cu3O6.5. Nature 516, 71–73 (2014).

    CAS  Article  Google Scholar 

  74. 74.

    Mitrano, M. et al. Possible light-induced superconductivity in K3C60 at high temperature. Nature 530, 461–464 (2016).

    CAS  Article  Google Scholar 

  75. 75.

    Buzzi, M. et al. Photo-molecular high temperature superconductivity. Phys. Rev. X 10, 031028 (2020).

    CAS  Google Scholar 

  76. 76.

    Kennes, D. M., Wilner, E. Y., Reichman, D. R. & Millis, A. J. Transient superconductivity from electronic squeezing of optically pumped phonons. Nat. Phys. 13, 479–483 (2017).

    CAS  Article  Google Scholar 

  77. 77.

    Denny, S. J., Clark, S. R., Laplace, Y., Cavalleri, A. & Jaksch, D. Proposed parametric cooling of bilayer cuprate superconductors by terahertz excitation. Phys. Rev. Lett. 114, 137001 (2015).

  78. 78.

    Michael, M. H. et al. Parametric resonance of Josephson plasma waves: a theory for optically amplified interlayer superconductivity in YBa2Cu3O6 + x. Phys. Rev. B 102, 174505 (2020).

  79. 79.

    Adler, R. et al. Correlated materials design: prospects and challenges. Rep. Prog. Phys. 82, 012504 (2018).

    Article  CAS  Google Scholar 

Download references


C.A. acknowledges support from the US Department of Energy, Office of Science, Office of Basic Energy Sciences under award DE-SC0019211. S.I.-B. acknowledges support from the US Department of Defense Army Research Office under award ARO W911NF-19-1-0371 and the US National Science Foundation under awards NSF DMR-1838463 and NSF ACI-1339804. A.J.M. acknowledges support from NSF DMR-1420634, the Columbia University Center for Precision Assembly of Superstratic and Superatomic Solids. J.-M.T. acknowledges J. Fowlie for her help with the nickelate section, X. Ravinet for designing Fig. 1 and the Swiss National Science Foundation for support through Division II (project 200020_179155). A.C., A.G. and J.-M.T. acknowledge the support of the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement 319286 Q-MAC. The Flatiron Institute (A.G., A.J.M.) is a division of the Simons Foundation.

Author information



Corresponding author

Correspondence to Sohrab Ismail-Beigi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ahn, C., Cavalleri, A., Georges, A. et al. Designing and controlling the properties of transition metal oxide quantum materials. Nat. Mater. (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing