Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of a phononic higher-order Weyl semimetal

Abstract

Weyl semimetals (WSMs)1 exhibit phenomena such as Fermi arc surface states, pseudo-gauge fields and quantum anomalies that arise from topological band degeneracy in crystalline solids for electrons1 and metamaterials for photons2 and phonons3. Here we report a higher-order Weyl semimetal (HOWSM) in a phononic system that exhibits topologically protected boundary states in multiple dimensions. We created the physical realization of the HOWSM in a chiral phononic crystal with uniaxial screw symmetry. Using acoustic pump–probe spectroscopies, we observed coexisting chiral Fermi arc states on two-dimensional surfaces and dispersive hinge arc states on one-dimensional hinge boundaries. These topological boundary states link the projections of the Weyl points (WPs) in different dimensions and directions, and hence demonstrate the higher-order topological physics4,5,6,7,8 in WSMs. Our study further establishes the fundamental connection between higher-order topology and Weyl physics in crystalline materials and should stimulate further work on other potential materials, such as higher-order topological nodal-line semimetals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: WSMs and HOWSMs.
Fig. 2: A phononic HOWSM.
Fig. 3: Topological surface states of the HOWSM.
Fig. 4: Higher-order hinge arc states.

Similar content being viewed by others

Data availability

All data are available in the main text and the Supplementary Information. Additional information is available from the corresponding authors upon reasonable request.

Code availability

We used the commercial software COMSOL MULTIPHYSICS to perform the acoustic wave simulations and eigenstates calculations. Requests for the computation details can be addressed to the corresponding authors.

References

  1. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    Article  CAS  Google Scholar 

  2. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    Article  CAS  Google Scholar 

  3. Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 1, 281–294 (2019).

    Article  Google Scholar 

  4. Benalcazar, W. A., Bernevig, B. A. & Hughes, T. L. Quantized electric multipole insulators. Science 357, 61–66 (2017).

    Article  CAS  Google Scholar 

  5. Langbehn, J., Peng, Y., Trifunovic, L., von Oppen, F. & Brouwer, P. W. Reflection-symmetric second-order topological insulators and superconductors. Phys. Rev. Lett. 119, 246401 (2017).

    Article  Google Scholar 

  6. Song, Z. D., Fang, Z. & Fang, C. (d–2)-dimensional edge states of rotation symmetry protected topological states. Phys. Rev. Lett. 119, 246402 (2017).

    Article  Google Scholar 

  7. Schindler, F. et al. Higher-order topological insulators. Sci. Adv. 4, eaat0346 (2018).

    Article  Google Scholar 

  8. Ezawa, M. Higher-order topological insulators and semimetals on the breathing kagome and pyrochlore lattices. Phys. Rev. Lett. 120, 026801 (2018).

    Article  CAS  Google Scholar 

  9. Zhang, T. et al. Double-Weyl phonons in transition-metal monosilicides. Phys. Rev. Lett. 120, 016401 (2018).

    Article  CAS  Google Scholar 

  10. Xiong, Z. et al. Topological node lines in mechanical metacrystals. Phys. Rev. B 97, 180101 (2018).

    Article  CAS  Google Scholar 

  11. Serra-Garcia, M. et al. Observation of a phononic quadrupole topological insulator. Nature 555, 342–345 (2018).

    Article  CAS  Google Scholar 

  12. Peterson, C. W., Benalcazar, W. A., Hughes, T. L. & Bahl, G. A quantized microwave quadrupole insulator with topological protected corner states. Nature 555, 346–350 (2018).

    Article  CAS  Google Scholar 

  13. Imhof, S. et al. Topolectrical circuit realization of topological corner modes. Nat. Phys. 14, 925–929 (2018).

    Article  CAS  Google Scholar 

  14. Noh, J. et al. Topological protection of photonic mid-gap defect modes. Nat. Photon. 12, 408–415 (2018).

    Article  CAS  Google Scholar 

  15. Xue, H., Yang, Y., Gao, F., Chong, Y. & Zhang, B. Acoustic higher-order topological insulator on a kagome lattice. Nat. Mater. 18, 108–112 (2019).

    Article  CAS  Google Scholar 

  16. Ni, X., Weiner, M., Alù, A. & Khanikaev, A. B. Observation of higher-order topological acoustic states protected by generalized chiral symmetry. Nat. Mater. 18, 113–120 (2019).

    Article  CAS  Google Scholar 

  17. Zhang, X. et al. Second-order topology and multi-dimensional topological transitions in sonic crystals. Nat. Phys. 15, 582–588 (2019).

    Article  CAS  Google Scholar 

  18. Zhang, X. et al. Symmetry-protected hierarchy of anomalous multipole topological band gaps in nonsymmorphic metacrystals. Nat. Commun. 11, 65 (2020).

    Article  CAS  Google Scholar 

  19. Qi, Y. et al. Acoustic realization of quadrupole topological insulators. Phys. Rev. Lett. 124, 206601 (2020).

    Article  CAS  Google Scholar 

  20. Xue, H. et al. Realization of an acoustic third-order topological insulator. Phys. Rev. Lett. 122, 244301 (2019).

    Article  CAS  Google Scholar 

  21. Zhang, X. et al. Dimensional hierarchy of higher-order topology in three-dimensional sonic crystals. Nat. Commun. 10, 5331 (2019).

    Article  Google Scholar 

  22. Ni, X., Li, M., Weiner, M., Alù, A. & Khanikaev, A. B. Demonstration of a quantized acoustic octupole topological insulator. Nat. Commun. 11, 2108 (2020).

    Article  CAS  Google Scholar 

  23. Xue, H. et al. Observation of an acoustic octupole topological insulator. Nat. Commun. 11, 2442 (2020).

    Article  CAS  Google Scholar 

  24. Weiner, M., Ni, X., Li, M., Alù, A. & Khanikaev, A. B. Demonstration of a third-order hierarchy of topological states in a three-dimensional acoustic metamaterial. Sci. Adv. 6, eaay4166 (2020).

    Article  CAS  Google Scholar 

  25. Wang, H.-X., Lin, Z.-K., Jiang, B., Guo, G.-Y. & Jiang, J.-H. Higher-order Weyl semimetals. Phys. Rev. Lett. 125, 146401 (2020).

    Article  CAS  Google Scholar 

  26. Ghorashi, S. A. A., Li, T. & Hughes, T. L. Higher-order Weyl semimetals. Phys. Rev. Lett. 125, 266804 (2020).

    Article  CAS  Google Scholar 

  27. & Wei, Q. et al. Higher-order topological semimetal in phononic crystals. Nat. Mater. https://www.nature.com/articles/s41563-021-00933-4 (2021).

  28. Fang, C., Lu, L., Liu, J. & Fu, L. Topological semimetals with helicoid surface states. Nat. Phys. 12, 936–941 (2016).

    Article  Google Scholar 

  29. Lin, M. & Hughes, T. L. Topological quadrupolar semimetals. Phys. Rev. B 98, 241103(R) (2018).

    Article  Google Scholar 

  30. Ezawa, M. Second-order topological insulators and loop-nodal semimetals in transition metal dichalcogenides XTe2 (X = Mo, W). Sci. Rep. 9, 5286 (2019).

    Article  Google Scholar 

Download references

Acknowledgements

Z.-K.L., B.J. and J.-H.J. are supported by the National Natural Science Foundation of China (Grant no. 12074281) and Jiangsu Province Specially-Appointed Professor Funding. H.-X.W. is supported by the National Natural Science Foundation of China (Grant no. 11904060). L.L., Y.W. and F.L. are supported by the Natural Science Foundation of Guangdong Province (no. 2020A1515010549) and China Postdoctoral Science Foundation (no. 2020M672615).

Author information

Authors and Affiliations

Authors

Contributions

J.-H.J. initiated the project. J.-H.J. and F.L. guided the research. J.-H.J., H.-X.W., B.J. and Z.-K.L. established the theory. H.-X.W. and L.L. performed the numerical calculations and simulations. L.L., Y.W., J.-H.J. and F.L. designed and achieved the experimental set-up and the measurements. All the authors contributed to the discussions of the results and the manuscript preparation. J.-H.J., H.-X.W., Z.K.L. and F.L. wrote the manuscript and the Supplementary Information.

Corresponding authors

Correspondence to Feng Li or Jian-Hua Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review Information Nature Materials thanks Alexander Khanikaev and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–20 and Notes 1–9.

Supplementary Video 1

We show the propagation of the hinge states dynamically in the video.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, L., Wang, HX., Lin, ZK. et al. Observation of a phononic higher-order Weyl semimetal. Nat. Mater. 20, 794–799 (2021). https://doi.org/10.1038/s41563-021-00985-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-00985-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing