Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Electronic properties of the bulk and surface states of Fe1+yTe1−xSex


The idea of employing non-Abelian statistics for error-free quantum computing ignited interest in reports of topological surface superconductivity and Majorana zero modes (MZMs) in FeTe0.55Se0.45. However, the topological features and superconducting properties are not observed uniformly across the sample surface. The understanding and practical control of these electronic inhomogeneities present a prominent challenge for potential applications. Here, we combine neutron scattering, scanning angle-resolved photoemission spectroscopy, and microprobe composition and resistivity measurements to characterize the electronic state of Fe1+yTe1−xSex. We establish a phase diagram in which the superconductivity is observed only at sufficiently low Fe concentration, in association with distinct antiferromagnetic correlations, whereas the coexisting topological surface state occurs only at sufficiently high Te concentration. We find that FeTe0.55Se0.45 is located very close to both phase boundaries, which explains the inhomogeneity of superconducting and topological states. Our results demonstrate the compositional control required for use of topological MZMs in practical applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Magnetic and superconducting phases in Fe1+yTe1−xSex.
Fig. 2: Local electrical, chemical and photoemission properties of Fe1+yTe1−xSex.
Fig. 3: Typical distribution of local chemical composition and electronic properties in the sample.
Fig. 4: Phase diagram of competing bulk and surface quantum states in Fe1+yTe1−xSex.
Fig. 5: Statistics of local phases and chemical composition in Fe1+yTe1−xSex samples.

Data availability

All data needed to evaluate the conclusions in the paper are present in the paper and/or the Supplementary Information. Additional data are available from the corresponding author upon reasonable request.


  1. 1.

    Castelvecchi, D. Quantum computers ready to leap out of the lab in 2017. Nature 541, 9–10 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Wendin, G. Quantum information processing with superconducting circuits: a review. Rep. Prog. Phys. 80, 106001 (2017).

    CAS  Article  Google Scholar 

  3. 3.

    Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    CAS  Article  Google Scholar 

  4. 4.

    Nayak, C., Simon, S. H., Stern, A., Freedman, M. & Sarma, S. D. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).

    CAS  Article  Google Scholar 

  5. 5.

    Sarma, S. D., Freedman, M. & Nayak, C. Majorana zero modes and topological quantum computation. npj Quantum Inf. 1, 15001 (2015).

    Article  Google Scholar 

  6. 6.

    Zhang, P. et al. Observation of topological superconductivity on the surface of an iron-based superconductor. Science 360, 182–186 (2018).

    Article  CAS  Google Scholar 

  7. 7.

    Rameau, J. D., Zaki, N., Gu, G. D., Johnson, P. D. & Weinert, M. Interplay of paramagnetism and topology in the Fe-chalcogenide high-Tc superconductors. Phys. Rev. B 99, 205117 (2019).

    CAS  Article  Google Scholar 

  8. 8.

    Zaki, N., Gu, G., Tsvelik, A., Wu, C. & Johnson, P. D. Time-reversal symmetry breaking in the Fe-chalcogenide superconductors. Proc. Natl Acad. Sci. USA 118, e2007241118 (2021).

    Article  CAS  Google Scholar 

  9. 9.

    Wang, D. et al. Evidence for Majorana bound states in an iron-based superconductor. Science 362, 333–335 (2018).

    CAS  Article  Google Scholar 

  10. 10.

    Zhu, S. et al. Nearly quantized conductance plateau of vortex zero mode in an iron-based superconductor. Science 367, 189–192 (2020).

    CAS  Article  Google Scholar 

  11. 11.

    Kong, L. et al. Half-integer level shift of vortex bound states in an iron-based superconductor. Nat. Phys. 15, 1181–1187 (2019).

    CAS  Article  Google Scholar 

  12. 12.

    Machida, T. et al. Zero-energy vortex bound state in the superconducting topological surface state of Fe(Se,Te). Nat. Mater. 18, 811–815 (2019).

    CAS  Article  Google Scholar 

  13. 13.

    Wang, Z. et al. Evidence for dispersing 1D Majorana channels in an iron-based superconductor. Science 367, 104–108 (2020).

    CAS  Article  Google Scholar 

  14. 14.

    Chen, M. et al. Discrete energy levels of Caroli-de Gennes-Matricon states in quantum limit in FeTe0.55Se0.45. Nat. Commun. 9, 970 (2018).

    Article  CAS  Google Scholar 

  15. 15.

    Cho, D., Bastiaans, K. M., Chatzopoulos, D., Gu, G. D. & Allan, M. P. A strongly inhomogeneous superfluid in an iron-based superconductor. Nature 571, 541–545 (2019).

    CAS  Article  Google Scholar 

  16. 16.

    Johnson, P. D. et al. Spin-orbit interactions and the nematicity observed in the Fe-based superconductors. Phys. Rev. Lett. 114, 167001 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Wang, Z. et al. Topological nature of the FeSe0.5Te0.5 superconductor. Phys. Rev. B 92, 115119 (2015).

    Article  CAS  Google Scholar 

  18. 18.

    Xu, G., Lian, B., Tang, P., Qi, X.-L. & Zhang, S.-C. Topological superconductivity on the surface of Fe-based superconductors. Phys. Rev. Lett. 117, 047001 (2016).

    Article  CAS  Google Scholar 

  19. 19.

    Wu, X., Qin, S., Liang, Y., Fan, H. & Hu, J. Topological characters in FeTe1−xSex thin films. Phys. Rev. B 93, 115129 (2016).

    Article  CAS  Google Scholar 

  20. 20.

    Zhang, P. et al. Multiple topological states in iron-based superconductors. Nat. Phys. 15, 41–47 (2019).

    CAS  Article  Google Scholar 

  21. 21.

    Peng, X.-L. et al. Observation of topological transition in high-Tc superconducting monolayer FeTe1−xSex films on SrTiO3(001). Phys. Rev. B 100, 155134 (2019).

    CAS  Article  Google Scholar 

  22. 22.

    Yin, Z. P., Haule, K. & Kotliar, G. Kinetic frustration and the nature of the magnetic and paramagnetic states in iron pnictides and iron chalcogenides. Nat. Mater. 10, 932–935 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    Zaliznyak, I. A. et al. Unconventional temperature enhanced magnetism in Fe1.1Te. Phys. Rev. Lett. 107, 216403 (2011).

    Article  CAS  Google Scholar 

  24. 24.

    Ieki, E. et al. Evolution from incoherent to coherent electronic states and its implications for superconductivity in FeTe1−xSex. Phys. Rev. B 89, 140506 (2014).

    Article  CAS  Google Scholar 

  25. 25.

    Liu, Z. K. et al. Experimental observation of incoherent-coherent crossover and orbital-dependent band renormalization in iron chalcogenide superconductors. Phys. Rev. B 92, 235138 (2015).

    Article  CAS  Google Scholar 

  26. 26.

    Yi, M. et al. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides. Nat. Commun. 6, 7777 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Yi, M., Zhang, Y., Shen, Z.-X. & Lu, D. Role of the orbital degree of freedom in iron-based superconductors. npj Quantum Mater. 2, 57 (2017).

    Article  CAS  Google Scholar 

  28. 28.

    Zaliznyak, I. et al. Spin-liquid polymorphism in a correlated electron system on the threshold of superconductivity. Proc. Natl Acad. Sci. USA 112, 10316–10320 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Xu, Z. et al. Thermal evolution of antiferromagnetic correlations and tetrahedral bond angles in superconducting FeTe1−xSex. Phys. Rev. B 93, 104517 (2016).

    Article  CAS  Google Scholar 

  30. 30.

    Zaliznyak, I. A. et al. Continuous magnetic and structural phase transitions in Fe1+yTe. Phys. Rev. B 85, 085105 (2012).

    Article  CAS  Google Scholar 

  31. 31.

    Fobes, D. et al. Ferro-orbital ordering transition in iron telluride Fe1+yTe. Phys. Rev. Lett. 112, 187202 (2014).

    Article  CAS  Google Scholar 

  32. 32.

    McQueen, T. M. et al. Extreme sensitivity of superconductivity to stoichiometry in Fe1+δSe. Phys. Rev. B 79, 014522 (2009).

    Article  CAS  Google Scholar 

  33. 33.

    Liu, T. J. et al. Charge-carrier localization induced by excess Fe in the superconductor Fe1+yTe1−xSex. Phys. Rev. B 80, 174509 (2009).

    Article  CAS  Google Scholar 

  34. 34.

    Wen, J. et al. Short-range incommensurate magnetic order near the superconducting phase boundary in Fe1+δTe1−xSex. Phys. Rev. B 80, 104506 (2009).

    Article  CAS  Google Scholar 

  35. 35.

    Bendele, M. et al. Tuning the superconducting and magnetic properties of FeySe0.25Te0.75 by varying the iron content. Phys. Rev. B 82, 212504 (2010).

    Article  CAS  Google Scholar 

  36. 36.

    Viennois, R., Giannini, E., van der Marel, D. & Cerny, R. Effect of Fe excess on structural, magnetic and superconducting properties of single-crystalline Fe1+xTe1−ySey. J. Solid State Chem. 183, 769–775 (2010).

    CAS  Article  Google Scholar 

  37. 37.

    Dong, C. et al. Revised phase diagram for the FeTe1−xSex system with fewer excess Fe atoms. Phys. Rev. B 84, 224506 (2011).

    Article  CAS  Google Scholar 

  38. 38.

    Sun, Y., Shi, Z. & Tamegai, T. Review of annealing effects and superconductivity in Fe1+yTe1−xSex superconductors. Supercond. Sci. Technol. 32, 103001 (2019).

    CAS  Article  Google Scholar 

  39. 39.

    Wen, J., Xu, G., Gu, G., Tranquada, J. M. & Birgeneau, R. J. Interplay between magnetism and superconductivity in iron-chalcogenide superconductors: crystal growth and characterizations. Rep. Prog. Phys. 74, 124503 (2011).

    Article  CAS  Google Scholar 

  40. 40.

    Tranquada, J. M., Xu, G. & Zaliznyak, I. A. Magnetism and superconductivity in Fe1+yTe1−xSex. J. Phys. Condens. Matter 32, 374003 (2020).

    CAS  Article  Google Scholar 

  41. 41.

    Zaliznyak, I. A. et al. Polarized neutron scattering on HYSPEC: the HYbrid SPECtrometer at SNS. J. Phys. Conf. Ser. 862, 012030 (2017).

    Article  CAS  Google Scholar 

  42. 42.

    Rinott, S. et al. Tuning across the BCS-BEC crossover in the multiband superconductor Fe1+yTe1−xSex: an angle-resolved photoemission study. Sci. Adv. 3, e1602372 (2017).

    Article  CAS  Google Scholar 

  43. 43.

    Zachar, O. & Zaliznyak, I. Dimensional cross-over and charge order in half-doped manganites and cobaltites. Phys. Rev. Lett. 91, 036401 (2003).

    Article  CAS  Google Scholar 

  44. 44.

    Phillabaum, B., Carlson, E. W. & Dahmen, K. A. Spatial complexity due to bulk electronic nematicity in a superconducting underdoped cuprate. Nat. Commun. 3, 915 (2012).

    CAS  Article  Google Scholar 

  45. 45.

    Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin-orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57–82 (2014).

    CAS  Article  Google Scholar 

  46. 46.

    Qiu, Y. et al. Spin gap and resonance at the nesting wave vector in superconducting FeSe0.4Te0.6. Phys. Rev. Lett. 103, 067008 (2009).

    Article  CAS  Google Scholar 

  47. 47.

    Leiner, J. et al. Modified magnetism within the coherence volume of superconducting Fe1+δSexTe1−x. Phys. Rev. B 90, 100501 (2014).

    Article  CAS  Google Scholar 

  48. 48.

    Xu, Z. et al. Disappearance of static magnetic order and evolution of spin fluctuations in Fe1+δSexTe1−x. Phys. Rev. B 82, 104525 (2010).

    Article  CAS  Google Scholar 

  49. 49.

    Liu, X. et al. X-ray diffuse scattering study of local distortions in Fe1+xTe induced by excess Fe. Phys. Rev. B 83, 184523 (2011).

    Article  CAS  Google Scholar 

  50. 50.

    Homes, C. C., Dai, Y. M., Schneeloch, J., Zhong, R. D. & Gu, G. D. Phonon anomalies in some iron telluride materials. Phys. Rev. B 93, 125135 (2016).

    Article  CAS  Google Scholar 

Download references


We gratefully acknowledge discussions with M. Lumsden, A. Tsvelik, A. Balatsky, Q. Li and X. Wang, and technical assistance from F. Loeb and M. K. Graves-Brook. This work at the Brookhaven National Laboratory (BNL) was supported by the Office of Basic Energy Sciences, Division of Materials Sciences and Engineering, United States Department of Energy (US DOE), under contract no. DE-SC0012704. Work at BNL’s Center for Functional Nanomaterials was sponsored by the Scientific User Facilities Division, Office of Basic Energy Sciences, US DOE, under the same contract. This research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory.

Author information




I.A.Z. conceived and directed the study. I.A.Z. and Y.L. designed the study with input from J.M.T. and P.D.J.; G.G., Z.X. and C.P. provided the samples for the study. I.A.Z., Y.L., D.F., A.T.S. and V.O.G. carried out neutron experiments and obtained the neutron data. N.Z. carried out ARPES measurements and initial ARPES analysis; Y.L. performed fitting of ARPES spectra. Y.L. performed local EDS and microprobe measurements with help from F.C. Y.L. and I.A.Z. analysed the data, prepared the figures and wrote the paper, with input from all authors.

Corresponding author

Correspondence to Igor A. Zaliznyak.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review Information Nature Materials thanks Donglai Feng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–12 and discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Zaki, N., Garlea, V.O. et al. Electronic properties of the bulk and surface states of Fe1+yTe1−xSex. Nat. Mater. (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing