Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Thermal chiral anomaly in the magnetic-field-induced ideal Weyl phase of Bi1−xSbx


The chiral anomaly is the predicted breakdown of chiral symmetry in a Weyl semimetal with monopoles of opposite chirality when an electric field is applied parallel to a magnetic field. It occurs because of charge pumping between monopoles of opposite chirality. Experimental observation of this fundamental effect is plagued by concerns about the current pathways. Here we demonstrate the thermal chiral anomaly, energy pumping between monopoles, in topological insulator bismuth–antimony alloys driven into an ideal Weyl semimetal state by a Zeeman field, with the chemical potential pinned at the Weyl points and in the absence of any trivial Fermi surface pockets. The experimental signature is a large enhancement of the thermal conductivity in an applied magnetic field parallel to the thermal gradient. This work demonstrates both pumping of energy and charge between the two Weyl points of opposite chirality and that they are related by the Wiedemann–Franz law.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Evolution of Bi1−xSbx alloys with composition and magnetic field.
Fig. 2: Bi89Sb11 and Bi85Sb15 electronic and thermal properties versus temperature (T).
Fig. 3: Bi95Sb5, Bi89Sb11 and Bi85Sb15 thermal conductivity κzz(Hz) dependence on longitudinal magnetic field (H) along the trigonal (z= <001>) direction at temperatures indicated.
Fig. 4: Wiedemann–Franz law verification; temperature (T) dependence of the κzz(Hz) increase.

Data availability

The data generated and analysed in this study are available within the paper and its Supplementary Information. Further data are available from the corresponding author on reasonable request.


  1. 1.

    Weyl, H. Elektron und gravitation. Z. Phys. 53, 330–352 (1929).

    Article  Google Scholar 

  2. 2.

    Nielsen, H. B. & Ninomiya, M. The Adler–Bell–Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. 130B, 389–396 (1983).

    CAS  Article  Google Scholar 

  3. 3.

    Christenson, J. H., Cronin, J. W., Fitch, V. L. & Turlay, R. Evidence for the 2π decay of the K20 meson. Phys. Rev. Lett. 13, 138–140 (1964).

    Article  Google Scholar 

  4. 4.

    Arnold, F. et al. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP. Nat. Commun. 7, 116157 (2016).

    Article  Google Scholar 

  5. 5.

    Huang, X. et al. Observation of the chiral-anomaly-induced negative magnetoresistance in 3D Weyl semimetal TaAs. Phys. Rev. X 5, 031023 (2015).

    Google Scholar 

  6. 6.

    Zhang, C.-L. et al. Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal. Nat. Commun. 7, 10735 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Spivak, N. Z. & Andreev, A. V. Magnetotransport phenomena related to the chiral anomaly in Weyl semimetals. Phys. Rev. B 93, 085107 (2016).

    Article  Google Scholar 

  8. 8.

    Liang, S. et al. Experimental tests of the chiral anomaly magnetoresistance in the Dirac–Weyl semimetals Na3Bi and GdPtBi. Phys. Rev. X 8, 031002 (2018).

    CAS  Google Scholar 

  9. 9.

    Li, Q. et al. Chiral magnetic effect in ZrTe5. Nat. Phys. 12, 3648 (2016).

    Google Scholar 

  10. 10.

    Li, H. et al. Negative magnetoresistance in Dirac semimetal Cd3As2. Nat. Commun. 7, 10301 (2016).

    CAS  Article  Google Scholar 

  11. 11.

    Guo, S. T. et al. Large transverse Hall-like signal in topological Dirac semimetal Cd3As2. Sci. Rep. 6, 27487 (2016).

    CAS  Article  Google Scholar 

  12. 12.

    Li, Y. et al. Field-induced resistivity plateau and unsaturated negative magnetoresistance in topological semimetal TaSb2. Phys. Rev. B 94, 121115(R) (2016).

    Article  Google Scholar 

  13. 13.

    Li, Y. P. et al. A negative magnetoresistance in topological semimetals of transition-metal dipnictides with nontrivial Z2 indices. Preprint at (2016).

  14. 14.

    Luo, Y. K. et al. Anomalous electronic structure and magnetoresistance in TaAs2. Sci. Rep. 6, 27294 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    Shen, B., Deng, X. Y., Kotliar, G. & Ni, N. Fermi surface topology and negative longitudinal magnetoresistance observed in the semimetal NbAs2. Phys. Rev. B 93, 195119 (2016).

    Article  Google Scholar 

  16. 16.

    Baker, D. R. & Heremans, J. P. The linear geometrical magnetoresistance effect: influence of geometry and material composition. Phys. Rev. B 59, 13927 (1999).

    CAS  Article  Google Scholar 

  17. 17.

    Hu, J. S., Rosenbaum, T. F. & Betts, J. B. Current jets, disorder, and linear magnetoresistance in the silver chalcogenides. Phys. Rev. Lett. 95, 186603 (2005).

    Article  Google Scholar 

  18. 18.

    Li, Y. et al. Negative magnetoresistance in Weyl semimetals NbAs andNbP: intrinsic chiral anomaly and extrinsic effects. Front. Phys. 12, 127205 (2017).

    Article  Google Scholar 

  19. 19.

    dos Reis, R. D. et al. On the search for the chiral anomaly in Weyl semimetals: the negative longitudinal magnetoresistance. New J. Phys. 18, 085006 (2016).

    Article  Google Scholar 

  20. 20.

    Noothoven van Goor, J. M. Donors and Acceptors in Bismuth Philips Research Report Suppl. 4 (Philips, 1971).

  21. 21.

    Jin, H. et al. The phonon-induced diamagnetic force and its effect on the lattice thermal conductivity. Nat. Mater. 14, 601–606 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Das, K. & Agarwal, A. Thermal and gravitational chiral anomaly induced magneto-transport in Weyl semimetals. Phys. Rev. Res. 2, 013088 (2020).

    CAS  Article  Google Scholar 

  23. 23.

    Gallo, C. F., Chandrasekhar, B. S. & Sutter, P. H. Transport properties of bismuth single crystals. J. Appl. Phys. 34, 144–152 (1963).

    CAS  Article  Google Scholar 

  24. 24.

    Andreev, A. V. & Spivak, B. Z. Longitudinal negative magnetoresistance and magnetotransport phenomena on conventional and topological conductors. Phys. Rev. Lett. 120, 026601 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    Schindler, C. et al. Anisotropic electrical and thermal magnetotransport in the magnetic semimetal GdPtBi. Phys. Rev. B 101, 125119 (2020).

    CAS  Article  Google Scholar 

  26. 26.

    Gooth, J. et al. Experimental signatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP. Nature 547, 324–327 (2017).

    CAS  Article  Google Scholar 

  27. 27.

    Tolman, R. C. & Ehrenfest, P. Temperature equilibrium in a static gravitational field. Phys. Rev. 36, 1791–1798 (1930).

    Article  Google Scholar 

  28. 28.

    Luttinger, J. M. Theory of thermal transport coefficients. Phys. Rev. 135, A1505–A1514 (1964).

    Article  Google Scholar 

  29. 29.

    Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970–974 (2008).

    CAS  Article  Google Scholar 

  30. 30.

    Vandaele, K., Otsuka, M., Hasegawa, Y. & Heremans, J. P. Confinement effects, surface effects, and transport in Bi and Bi1−xSbx semiconducting and semimetallic nanowires. J. Phys. Condens. Matter 30, 403001 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Liu, Y. & Allen, R. E. Electronic structure of the semimetals Bi and Sb. Phys. Rev. B 52, 1566–1577 (1995).

    CAS  Article  Google Scholar 

  32. 32.

    Cucka, P. & Barrett, C. S. The crystal structure of Bi and of solid solutions of Pb, Sn, Sb and Te in Bi. Acta Crystallogr. 15, 865–872 (1962).

    CAS  Article  Google Scholar 

  33. 33.

    Mendez, E. E., Misu, A. & Dresselhaus, M. S. Pressure-dependent magnetoreflection studies of Bi and Bi1−xSbx alloys. Phys. Rev. B 24, 639–648 (1981).

    CAS  Article  Google Scholar 

  34. 34.

    Brandt, N. B., Svistova, E. A. & Semenov, M. V. Electron transitions in antimony-rich bismuth–antimony alloys in strong magnetic fields. Sov. Phys. JETP 32, 238 (1971).

    Google Scholar 

  35. 35.

    Şahin, C. & Flatté, M. E. Tunable giant spin hall conductivities in a atrong spin-orbit semimetal: Bi1−xSbx. Phys. Rev. Lett. 114, 107201 (2015).

    Article  Google Scholar 

  36. 36.

    Cohen, M. H. & Blount, E. I. The g-factor and de Haas–van Alphen effect of electrons in bismuth. Philos. Mag. 5, 115–126 (1960).

    CAS  Article  Google Scholar 

  37. 37.

    Smith, G. E., Baraff, G. A. & Rowell, J. M. Effective g-factor of electrons and holes in bismuth. Phys. Rev. 135, A1118 (1964).

    Article  Google Scholar 

  38. 38.

    Vecchi, M. P., Pereira, J. R. & Dresselhaus, M. S. Anomalies in the magnetoreflection spectrum of bismuth in the low-quantum-number limit. Phys. Rev. B 14, 298–317 (1976).

    CAS  Article  Google Scholar 

  39. 39.

    Heremans, J. P., Shayegan, M., Dresselhaus, M. S. & Issi, J.-P. High magnetic field thermal conductivity measurements in graphite intercalation compounds. Phys. Rev. B 26, 3338–3346 (1982).

    CAS  Article  Google Scholar 

  40. 40.

    Kagan, V. D. & Red’ko, N. A. Phonon thermal conductivity of bismuth alloys. Sov. Phys. JETP 73, 664–671 (1991).

    Google Scholar 

  41. 41.

    Argyres, P. N. & Adams, E. N. Longitudinal magnetoresistance in the quantum limit. Phys. Rev. 104, 900–908 (1956).

    Article  Google Scholar 

Download references


This work was supported by CEM and NSF MRSEC under grant numbers DMR-2011876 (to D.V., W.Z., N.T., J.P.H.) and DMR-1420451 (all authors). The authors acknowledge useful discussions with M. A. H. Vozmediano. R. Ripley edited the text and contributed to the illustrations.

Author information




The experiments were designed and carried out by D.V. and J.P.H. The theory was carried out by W.Z., C.Ş., M.E.F., N.T. and J.P.H. All contributed to the integration of theory and experiment and in writing the manuscript.

Corresponding author

Correspondence to Joseph P. Heremans.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Kamran Behnia, Qiang Li, Binghai Yan and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary figures and tables.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vu, D., Zhang, W., Şahin, C. et al. Thermal chiral anomaly in the magnetic-field-induced ideal Weyl phase of Bi1−xSbx. Nat. Mater. (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing