Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Enhanced substrate stress relaxation promotes filopodia-mediated cell migration

Abstract

Cell migration on two-dimensional substrates is typically characterized by lamellipodia at the leading edge, mature focal adhesions and spread morphologies. These observations result from adherent cell migration studies on stiff, elastic substrates, because most cells do not migrate on soft, elastic substrates. However, many biological tissues are soft and viscoelastic, exhibiting stress relaxation over time in response to a deformation. Here, we have systematically investigated the impact of substrate stress relaxation on cell migration on soft substrates. We observed that cells migrate minimally on substrates with an elastic modulus of 2 kPa that are elastic or exhibit slow stress relaxation, but migrate robustly on 2-kPa substrates that exhibit fast stress relaxation. Strikingly, migrating cells were not spread out and did not extend lamellipodial protrusions, but were instead rounded, with filopodia protrusions extending at the leading edge, and exhibited small nascent adhesions. Computational models of cell migration based on a motor–clutch framework predict the observed impact of substrate stress relaxation on cell migration and filopodia dynamics. Our findings establish substrate stress relaxation as a key requirement for robust cell migration on soft substrates and uncover a mode of two-dimensional cell migration marked by round morphologies, filopodia protrusions and weak adhesions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Substrate stress relaxation regulates cell migration on soft substrates.
Fig. 2: Cells migrate on viscoelastic substrates with rounded morphologies.
Fig. 3: Filopodia protrusions mediate migration on soft, fast-relaxing substrates.
Fig. 4: Adhesion and traction force mediate migration on fast-relaxing substrates.
Fig. 5: Simulations capture the impact of substrate stress relaxation on cell migration.
Fig. 6: Substrate stress relaxation regulates filopodia dynamics.

Similar content being viewed by others

Data availability

All data relevant to this manuscript are available upon request. Source data are provided with this paper.

Code availability

All analyses codes relevant to this manuscript have been deposited in the DOI-minting repository Zenodo54. Simulation codes are available upon request.

References

  1. Ridley, A. J. et al. Cell migration: integrating signals from front to back. Science 302, 1704–1709 (2003).

    Article  CAS  Google Scholar 

  2. Lauffenburger, D. A. & Horwitz, A. F. Cell migration: a physically integrated molecular process. Cell 84, 359–369 (1996).

    Article  CAS  Google Scholar 

  3. Shafqat-Abbasi, H. et al. An analysis toolbox to explore mesenchymal migration heterogeneity reveals adaptive switching between distinct modes. eLife 5, e11384 (2016).

    Article  Google Scholar 

  4. Wisdom, K. M. et al. Matrix mechanical plasticity regulates cancer cell migration through confining microenvironments. Nat. Commun. 9, 4144 (2018).

    Article  CAS  Google Scholar 

  5. Wolf, K. et al. Physical limits of cell migration: control by ECM space and nuclear deformation and tuning by proteolysis and traction force. J. Cell Biol. 201, 1069–1084 (2013).

    Article  CAS  Google Scholar 

  6. Haston, W. S., Shields, J. M. & Wilkinson, P. C. Lymphocyte locomotion and attachment on two-dimensional surfaces and in three-dimensional matrices. J. Cell Biol. 92, 747–752 (1982).

    Article  CAS  Google Scholar 

  7. Yamada, K. M. & Sixt, M. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol. 20, 738–752 (2019).

    Article  CAS  Google Scholar 

  8. Reversat, A. et al. Cellular locomotion using environmental topography. Nature 582, 582–585 (2020).

    Article  CAS  Google Scholar 

  9. Hons, M. et al. Chemokines and integrins independently tune actin flow and substrate friction during intranodal migration of T cells. Nat. Immunol. 19, 606–616 (2018).

    Article  CAS  Google Scholar 

  10. Friedl, P. & Wolf, K. Plasticity of cell migration: a multiscale tuning model. J. Cell Biol. 188, 11–19 (2010).

    Article  CAS  Google Scholar 

  11. Xue, F., Janzen, D. M. & Knecht, D. A. Contribution of flopodia to cell migration: a mechanical link between protrusion and contraction. Int J. Cell Biol. 2010, 507821 (2010).

    Article  Google Scholar 

  12. Jacquemet, G., Hamidi, H. & Ivaska, J. Filopodia in cell adhesion, 3D migration and cancer cell invasion. Curr. Opin. Cell Biol. 36, 23–31 (2015).

    Article  CAS  Google Scholar 

  13. Jacquemet, G. et al. Filopodome mapping identifies p130Cas as a mechanosensitive regulator of filopodia stability. Curr. Biol. 29, 202–216 (2019).

    Article  CAS  Google Scholar 

  14. Charras, G. & Sahai, E. Physical influences of the extracellular environment on cell migration. Nat. Rev. Mol. Cell Biol. 15, 813–824 (2014).

    Article  CAS  Google Scholar 

  15. Kim, D. H. & Wirtz, D. Predicting how cells spread and migrate: focal adhesion size does matter. Cell Adh. Migr. 7, 293–296 (2013).

    Article  Google Scholar 

  16. Pathak, A. & Kumar, S. Independent regulation of tumor cell migration by matrix stiffness and confinement. Proc. Natl Acad. Sci. USA 109, 10334–10339 (2012).

    Article  CAS  Google Scholar 

  17. Bangasser, B. L. et al. Shifting the optimal stiffness for cell migration. Nat. Commun. 8, 15313 (2017).

    Article  CAS  Google Scholar 

  18. Oakes, P. W. et al. Lamellipodium is a myosin-independent mechanosensor. Proc. Natl Acad. Sci. USA 115, 2646–2651 (2018).

    Article  CAS  Google Scholar 

  19. Liou, Y. R. et al. Substrate stiffness regulates filopodial activities in lung cancer cells. PLoS ONE 9, e89767 (2014).

    Article  CAS  Google Scholar 

  20. Wong, S., Guo, W. H. & Wang, Y. L. Fibroblasts probe substrate rigidity with filopodia extensions before occupying an area. Proc. Natl Acad. Sci. USA 111, 17176–17181 (2014).

    Article  CAS  Google Scholar 

  21. Chan, C. E. & Odde, D. J. Traction dynamics of filopodia on compliant substrates. Science 322, 1687–1691 (2008).

    Article  CAS  Google Scholar 

  22. Lo, C. M., Wang, H. B., Dembo, M. & Wang, Y. L. Cell movement is guided by the rigidity of the substrate. Biophys. J. 79, 144–152 (2000).

    Article  CAS  Google Scholar 

  23. Levental, I., Georges, P. C. & Janmey, P. A. Soft biological materials and their impact on cell function. Soft Matter 3, 299–306 (2007).

    Article  CAS  Google Scholar 

  24. Chaudhuri, O. et al. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15, 326–334 (2016).

    Article  CAS  Google Scholar 

  25. Nam, S. et al. Cell cycle progression in confining microenvironments is regulated by a growth-responsive TRPV4-PI3K/Akt-p27Kip1 signaling axis. Sci. Adv. 5, eaaw6171 (2019).

    Article  CAS  Google Scholar 

  26. Charrier, E. E., Pogoda, K., Wells, R. G. & Janmey, P. A. Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nat. Commun. 9, 449 (2018).

    Article  CAS  Google Scholar 

  27. Gong, Z. et al. Matching material and cellular timescales maximizes cell spreading on viscoelastic substrates. Proc. Natl Acad. Sci. USA 115, E2686–E2695 (2018).

    Article  CAS  Google Scholar 

  28. Chaudhuri, O. et al. Extracellular matrix stiffness and composition jointly regulate the induction of malignant phenotypes in mammary epithelium. Nat. Mater. 13, 970–978 (2014).

    Article  CAS  Google Scholar 

  29. Chaudhuri, O. et al. Substrate stress relaxation regulates cell spreading. Nat. Commun. 6, 6364 (2015).

    Article  CAS  Google Scholar 

  30. Cameron, A. R., Frith, J. E. & Cooper-White, J. J. The influence of substrate creep on mesenchymal stem cell behaviour and phenotype. Biomaterials 32, 5979–5993 (2011).

    Article  CAS  Google Scholar 

  31. Nam, S. & Chaudhuri, O. Mitotic cells generate protrusive extracellular forces to divide in three-dimensional microenvironments. Nat. Phys. 14, 621–628 (2018).

    Article  CAS  Google Scholar 

  32. Lee, H. P., Gu, L., Mooney, D. J., Levenston, M. E. & Chaudhuri, O. Mechanical confinement regulates cartilage matrix formation by chondrocytes. Nat. Mater. 16, 1243–1251 (2017).

    Article  CAS  Google Scholar 

  33. Kelley, L. C., Lohmer, L. L., Hagedorn, E. J. & Sherwood, D. R. Traversing the basement membrane in vivo: a diversity of strategies. J. Cell Biol. 204, 291–302 (2014).

    Article  CAS  Google Scholar 

  34. Chen, M. B., Whisler, J. A., Jeon, J. S. & Kamm, R. D. Mechanisms of tumor cell extravasation in an in vitro microvascular network platform. Integr. Biol. 5, 1262–1271 (2013).

  35. Tse, J. R., & Engler, A. J. Preparation of hydrogel substrates with tunable mechanical properties. Curr. Protoc. Cell Biol. 47, 1–16 (2010).

    Article  Google Scholar 

  36. Arjonen, A., Kaukonen, R. & Ivaska, J. Filopodia and adhesion in cancer cell motility. Cell Adh. Migr. 5, 421–430 (2011).

    Article  Google Scholar 

  37. Zaidel-Bar, R., Milo, R., Kam, Z. & Geiger, B. A paxillin tyrosine phosphorylation switch regulates the assembly and form of cell-matrix adhesions. J. Cell Sci. 120, 137–148 (2007).

    Article  CAS  Google Scholar 

  38. Bangasser, B. L., Rosenfeld, S. S. & Odde, D. J. Determinants of maximal force transmission in a motor-clutch model of cell traction in a compliant microenvironment. Biophys. J. 105, 581–592 (2013).

    Article  CAS  Google Scholar 

  39. Heckman, C. A. & Plummer, H. K. Filopodia as sensors. Cell Signal 25, 2298–2311 (2013).

    Article  CAS  Google Scholar 

  40. Albuschies, J. & Vogel, V. The role of filopodia in the recognition of nanotopographies. Sci. Rep. 3, 1658 (2013).

    Article  CAS  Google Scholar 

  41. Rubiano, A. et al. Viscoelastic properties of human pancreatic tumors and in vitro constructs to mimic mechanical properties. Acta Biomater. 67, 331–340 (2018).

    Article  Google Scholar 

  42. Chaudhuri, O., Cooper-White, J., Janmey, P. A., Mooney, D. J. & Shenoy, V. B. Effects of extracellular matrix viscoelasticity on cellular behaviour. Nature 584, 535–546 (2020).

    Article  CAS  Google Scholar 

  43. Nam, S. et al. Cell cycle progression in confining microenvironments is regulated by a growth-responsive TRPV4-PI3K/Akt-p27(Kip1) signaling axis. Sci. Adv. 5, eaaw6171 (2019).

    Article  CAS  Google Scholar 

  44. Sinkus, R. et al. High-resolution tensor MR elastography for breast tumour detection. Phys. Med. Biol. 45, 1649–1664 (2000).

    Article  CAS  Google Scholar 

  45. Liu, Y. J. et al. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160, 659–672 (2015).

    Article  CAS  Google Scholar 

  46. Friedl, P. & Wolf, K. Tumour-cell invasion and migration: diversity and escape mechanisms. Nat. Rev. Cancer 3, 362–374 (2003).

    Article  CAS  Google Scholar 

  47. Jacquemet, G. et al. L-type calcium channels regulate filopodia stability and cancer cell invasion downstream of integrin signalling. Nat. Commun. 7, 13297 (2016).

    Article  CAS  Google Scholar 

  48. Hu, K. et al. Mammalian-enabled (MENA) protein enhances oncogenic potential and cancer stem cell-like phenotype in hepatocellular carcinoma cells. FEBS Open Bio 7, 1144–1153 (2017).

    Article  CAS  Google Scholar 

  49. Oudin, M. J. et al. MENA confers resistance to paclitaxel in triple-negative breast cancer. Mol. Cancer Ther. 16, 143–155 (2017).

    Article  CAS  Google Scholar 

  50. Harney, A. S. et al. Real-time imaging reveals local, transient vascular permeability, and tumor cell intravasation stimulated by TIE2hi macrophage-derived VEGFA. Cancer Discov. 5, 932–943 (2015).

    Article  CAS  Google Scholar 

  51. Lee, J. Y. et al. YAP-independent mechanotransduction drives breast cancer progression. Nat. Commun. 10, 1848 (2019).

    Article  CAS  Google Scholar 

  52. Poincloux, R. et al. Contractility of the cell rear drives invasion of breast tumor cells in 3D matrigel. Proc. Natl Acad. Sci. USA 108, 1943–1948 (2011).

    Article  CAS  Google Scholar 

  53. Lee, H. P., Stowers, R. & Chaudhuri, O. Volume expansion and TRPV4 activation regulate stem cell fate in three-dimensional microenvironments. Nat. Commun. 10, 529 (2019).

    Article  CAS  Google Scholar 

  54. Adebowale, K. et al. Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. Zenodo https://doi.org/10.5281/zenodo.4562343 (2021).

Download references

Acknowledgements

We acknowledge R. Stowers (University of California, Santa Barbara) and the Chaudhuri laboratory for helpful discussion, and M. Levenston (Stanford University) for use of mechanical testing equipment. We also acknowledge the Stanford Cell Sciences Imaging Facility for Imaris software access and for technical assistance with Imaris. Figure 5n is a schematic created with BioRender.com. K.A. acknowledges financial support from the Stanford ChEM-H Chemistry/Biology Interface Predoctoral Training Program and the National Institute of General Medical Sciences of the National Institutes of Health under Award Number T32GM120007, and a National Science Foundation (NSF) Graduate Student fellowship. D.G. was funded in part by a National Institutes of Health Fellowship under Award Number GM116328. This work was supported by a National Institutes of Health National Cancer Institute (NIH NCI) grant (U54 CA210190) for D.J.O. and NIH NCI grant R01 CA232256, NIH National Institute of Biomedical Imaging and Bioengineering awards R01EB017753 and R01EB030876, NSF Center for Engineering Mechanobiology grant CMMI-154857, and NSF grants MRSEC/DMR-1720530 and DMS-1953572 to V.B.S., and by an American Cancer Society grant (RSG-16-208-01) and a NIH NCI grant (R37 CA214136) to O.C.

Author information

Authors and Affiliations

Authors

Contributions

K.A. and O.C. designed the experiments. K.M.W. designed the material system. K.A. performed rheometry, substrate preparation, time-lapse microscopy cell migration, immunofluorescence and filopodia experiments. H.L. performed the calcium imaging experiments. S.N. helped with the traction force experiments. D.G. and T.M. performed the siRNA knockdown experiments. K.A. performed all experimental data analysis and statistical tests. Z.G., V.B.S., J.C.H. and D.J.O. performed the computer simulations and analysis. K.A., Z.G., J.C.H., V.B.S., D.J.O. and O.C. wrote the manuscript.

Corresponding author

Correspondence to Ovijit Chaudhuri.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review Information Nature Materials thanks Pakorn Kanchanawong and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Tables 1–4, Videos 1–5, notes and references.

Reporting Summary

Supplementary Video 1

Top view of HT-1080 cells migrating on fast-relaxing substrates. Scale bar, 20 μm. Time, h:min.

Supplementary Video 2

Top view of HT-1080 cells migrating on slow-relaxing substrates. Scale bar, 20 μm. Time, h:min.

Supplementary Video 3

Top view of HT-1080 cell tugging on substrate and subsequent release (yellow square). Green, cell; red, fiducial marker. Scale bar, 20 μm. Time, h:min.

Supplementary Video 4

Live imaging of HT-1080 cells (actin-labelled) filopodia on fast-relaxing substrates. Scale bar, 20 μm. Time, h:min.

Supplementary Video 5

Live imaging of HT-1080 cells (actin-labelled) filopodia on slow-relaxing substrates. Scale bar, 20 μm. Time, h:min.

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Supplementary Fig. 1

Statistical source data.

Source Data Supplementary Fig. 2

Statistical source data.

Source Data Supplementary Fig. 3

Statistical source data.

Source Data Supplementary Fig. 4

Statistical source data.

Source Data Supplementary Fig. 5

Statistical source data.

Source Data Supplementary Fig. 6

Statistical source data.

Source Data Supplementary Fig. 7

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adebowale, K., Gong, Z., Hou, J.C. et al. Enhanced substrate stress relaxation promotes filopodia-mediated cell migration. Nat. Mater. 20, 1290–1299 (2021). https://doi.org/10.1038/s41563-021-00981-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-00981-w

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing