Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-rate nanofluidic energy absorption in porous zeolitic frameworks

Abstract

Optimal mechanical impact absorbers are reusable and exhibit high specific energy absorption. The forced intrusion of liquid water in hydrophobic nanoporous materials, such as zeolitic imidazolate frameworks (ZIFs), presents an attractive pathway to engineer such systems. However, to harness their full potential, it is crucial to understand the underlying water intrusion and extrusion mechanisms under realistic, high-rate deformation conditions. Here, we report a critical increase of the energy absorption capacity of confined water-ZIF systems at elevated strain rates. Starting from ZIF-8 as proof-of-concept, we demonstrate that this attractive rate dependence is generally applicable to cage-type ZIFs but disappears for channel-containing zeolites. Molecular simulations reveal that this phenomenon originates from the intrinsic nanosecond timescale needed for critical-sized water clusters to nucleate inside the nanocages, expediting water transport through the framework. Harnessing this fundamental understanding, design rules are formulated to construct effective, tailorable and reusable impact energy absorbers for challenging new applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Experimental setup.
Fig. 2: Water intrusion and extrusion of ZIF-8 at low-rate, medium-rate and high-rate loading conditions.
Fig. 3: Simulated water distribution in ZIF-8 and its effect on gate opening.
Fig. 4: Determining the intrinsic timescale for water mobility in the ZIF-8 nanocages by non-equilibrium MD simulations.
Fig. 5: Generalization of the design rules.
Fig. 6: Water intrusion and extrusion of channel-containing zeolites at different conditions.

Data availability

Source data for the main paper figures are provided with this paper. Additional experimental data generated during the current study are available from the authors upon request. Relevant configurations for the optimizations and MD simulations are available through Zenodo77. Additional computational data supporting the results of this work are available from the online GitHub repository at https://github.com/SvenRogge/supporting-info or upon request from the authors.

Code availability

The Yaff software used to perform the MD simulations in this paper is freely accessible via https://molmod.ugent.be/software/yaff. Representative input and processing scripts are available at https://github.com/SvenRogge/supporting-info.

References

  1. 1.

    Lu, G. & Yu, T. Energy Absorption of Structures and Materials (Woodhead, 2003). .

  2. 2.

    Gibson, L. J. & Ashby, M. F. Cellular Solids: Structure and Properties 2nd edn (Cambridge Univ. Press, 1997).

    Google Scholar 

  3. 3.

    Clough, E. C. et al. Elastomeric microlattice impact attenuators. Matter 1, 1519–1531 (2019).

    Google Scholar 

  4. 4.

    Fraux, G., Coudert, F. X., Boutin, A. & Fuchs, A. H. Forced intrusion of water and aqueous solutions in microporous materials: from fundamental thermodynamics to energy storage devices. Chem. Soc. Rev. 46, 7421–7437 (2017).

    CAS  Google Scholar 

  5. 5.

    Eroshenko, V., Regis, R.-C., Soulard, M. & Patarin, J. Energetics: a new field of applications for hydrophobic zeolites. J. Am. Chem. Soc. 123, 8129–8130 (2001).

    CAS  Google Scholar 

  6. 6.

    Tinti, A., Giacomello, A., Grosu, Y. & Casciola, C. M. Intrusion and extrusion of water in hydrophobic nanopores. Proc. Natl Acad. Sci. USA 114, E10266–E10273 (2017).

    CAS  Google Scholar 

  7. 7.

    Furukawa, H., Cordova, K. E., O'Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444 (2013).

    Google Scholar 

  8. 8.

    Moghadam, P. Z. et al. Development of a Cambridge Structural Database subset: a collection of metal–organic frameworks for past, present, and future. Chem. Mater. 29, 2618–2625 (2017).

    CAS  Google Scholar 

  9. 9.

    Ortiz, G., Nouali, H., Marichal, C., Chaplais, G. & Patarin, J. Energetic performances of the metal–organic framework ZIF-8 obtained using high pressure water intrusion–extrusion experiments. Phys. Chem. Chem. Phys. 15, 4888–4891 (2013).

    CAS  Google Scholar 

  10. 10.

    Grosu, Y. et al. Stability of zeolitic imidazolate frameworks: effect of forced water intrusion and framework flexibility dynamics. RSC Adv. 5, 89498–89502 (2015).

    CAS  Google Scholar 

  11. 11.

    Ortiz, G., Nouali, H., Marichal, C., Chaplais, G. & Patarin, J. L. Energetic performances of ‘ZIF-71-aqueous solution’ systems: a perfect shock-absorber with water. J. Phys. Chem. C. 118, 21316–21322 (2014).

    CAS  Google Scholar 

  12. 12.

    Sun, Y., Li, Y. & Tan, J. C. Liquid intrusion into zeolitic imidazolate framework-7 nanocrystals: exposing the roles of phase transition and gate opening to enable energy absorption applications. ACS Appl. Mater. Interfaces 10, 41831–41838 (2018).

    CAS  Google Scholar 

  13. 13.

    Grosu, Y. et al. A highly stable nonhysteretic {Cu2(tebpz) MOF + water} molecular spring. Chem. Phys. Chem. 17, 3359–3364 (2016).

  14. 14.

    Park, K. S. et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Natl Acad. Sci. USA 103, 10186–10191 (2006).

  15. 15.

    Banerjee, R. et al. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science 319, 939–943 (2008).

  16. 16.

    Ortiz, A. U., Freitas, A. P., Boutin, A., Fuchs, A. H. & Coudert, F.-X. What makes zeolitic imidazolate frameworks hydrophobic or hydrophilic? The impact of geometry and functionalization on water adsorption. Phys. Chem. Chem. Phys. 16, 9940–9949 (2014).

    CAS  Google Scholar 

  17. 17.

    Khay, I. et al. Assessment of the energetic performances of various ZIFs with SOD or RHO topology using high pressure water intrusion-extrusion experiments. Dalton Trans. 45, 4392–4400 (2016).

    CAS  Google Scholar 

  18. 18.

    Sun, Y., Li, Y. & Tan, J. C. Framework flexibility of ZIF-8 under liquid intrusion: discovering time-dependent mechanical response and structural relaxation. Phys. Chem. Chem. Phys. 20, 10108–10113 (2018).

    CAS  Google Scholar 

  19. 19.

    Lowe, A. et al. Effect of flexibility and nanotriboelectrification on the dynamic reversibility of water intrusion into nanopores: pressure-transmitting fluid with frequency-dependent dissipation capability. ACS Appl. Mater. Interfaces 11, 40842–40849 (2019).

    CAS  Google Scholar 

  20. 20.

    Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020).

    CAS  Google Scholar 

  21. 21.

    Huang, X. C., Lin, Y. Y., Zhang, J. P. & Chen, X. M. Ligand-directed strategy for zeolite-type metal-organic frameworks: zinc(II) imidazolates with unusual zeolitic topologies. Angew. Chem. Int. Ed. 45, 1557–1559 (2006).

    CAS  Google Scholar 

  22. 22.

    Khay, I., Chaplais, G., Nouali, H., Marichal, C. & Patarin, J. Water intrusion–extrusion experiments in ZIF-8: impacts of the shape and particle size on the energetic performances. RSC Adv. 5, 31514–31518 (2015).

    CAS  Google Scholar 

  23. 23.

    Fraux, G., Boutin, A., Fuchs, A. H. & Coudert, F.-X. Structure, dynamics, and thermodynamics of intruded electrolytes in ZIF-8. J. Phys. Chem. C. 123, 15589–15598 (2019).

    CAS  Google Scholar 

  24. 24.

    Sakata, Y. et al. Shape-memory nanopores induced in coordination frameworks by crystal downsizing. Science 339, 193–196 (2013).

    CAS  Google Scholar 

  25. 25.

    Krause, S. et al. The effect of crystallite size on pressure amplification in switchable porous solids. Nat. Commun. 9, 1573 (2018).

    Google Scholar 

  26. 26.

    Bennett, T. D. & Cheetham, A. K. Amorphous metal-organic frameworks. Acc. Chem. Res. 47, 1555–1562 (2014).

    CAS  Google Scholar 

  27. 27.

    Gonzalez, M. A. & Abascal, J. L. A flexible model for water based on TIP4P/2005. J. Chem. Phys. 135, 224516 (2011).

    Google Scholar 

  28. 28.

    Ghosh, P., Kim, K. C. & Snurr, R. Q. Modeling water and ammonia adsorption in hydrophobic metal-organic frameworks: single components and mixtures. J. Phys. Chem. C. 118, 1102–1110 (2014).

    CAS  Google Scholar 

  29. 29.

    Zhang, H. & Snurr, R. Q. Computational study of water adsorption in the hydrophobic metal-organic framework ZIF-8: adsorption mechanism and acceleration of the simulations. J. Phys. Chem. C 121, 24000–24010 (2017).

    CAS  Google Scholar 

  30. 30.

    Hobday, C. L. et al. Understanding the adsorption process in ZIF-8 using high pressure crystallography and computational modelling. Nat. Commun. 9, 1429 (2018).

    Google Scholar 

  31. 31.

    Durholt, J. P., Fraux, G., Coudert, F. X. & Schmid, R. Ab initio derived force fields for zeolitic imidazolate frameworks: MOF-FF for ZIFs. J. Chem. Theory Comput. 15, 2420–2432 (2019).

    Google Scholar 

  32. 32.

    Phan, A. et al. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Acc. Chem. Res. 43, 58–67 (2010).

    CAS  Google Scholar 

  33. 33.

    Majumder, M., Chopra, N., Andrews, R. & Hinds, B. J. Enhanced flow in carbon nanotubes. Nature 438, 44 (2005).

    CAS  Google Scholar 

  34. 34.

    Holt, J. K. et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312, 1034–1037 (2006).

    CAS  Google Scholar 

  35. 35.

    Secchi, E. et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537, 210–213 (2016).

    CAS  Google Scholar 

  36. 36.

    Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).

    CAS  Google Scholar 

  37. 37.

    Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017).

    CAS  Google Scholar 

  38. 38.

    Keerthi, A. et al. Ballistic molecular transport through two-dimensional channels. Nature 558, 420–424 (2018).

    CAS  Google Scholar 

  39. 39.

    Moggach, S. A., Bennett, T. D. & Cheetham, A. K. The effect of pressure on ZIF-8: increasing pore size with pressure and the formation of a high-pressure phase at 1.47 GPa. Angew. Chem. Int. Ed. 48, 7087–7089 (2009).

    CAS  Google Scholar 

  40. 40.

    Cnudde, P. et al. Light olefin diffusion during the MTO process on H-SAPO-34: a complex interplay of molecular factors. J. Am. Chem. Soc. 142, 6007–6017 (2020).

    CAS  Google Scholar 

  41. 41.

    Sun, Y. et al. Experimental study on energy dissipation characteristics of ZSM‐5 zeolite/water system. Adv. Eng. Mater. 15, 740–746 (2013).

    CAS  Google Scholar 

  42. 42.

    Sun, Y. et al. A candidate of mechanical energy mitigation system: dynamic and quasi-static behaviors and mechanisms of zeolite β/water system. Mater. Des. 66, 545–551 (2015).

    CAS  Google Scholar 

  43. 43.

    Gray, G. T. III Classic split Hopkinson pressure bar testing. ASM Handb. 8, 462–476 (2000).

    Google Scholar 

  44. 44.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  45. 45.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B. 59, 1758–1775 (1999).

    CAS  Google Scholar 

  46. 46.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  47. 47.

    Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Google Scholar 

  48. 48.

    Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    CAS  Google Scholar 

  49. 49.

    Vanpoucke, D. E. P., Lejaeghere, K., Van Speybroeck, V., Waroquier, M. & Ghysels, A. Mechanical properties from periodic plane wave quantum mechanical codes: the challenge of the flexible nanoporous MIL-47(V) framework. J. Phys. Chem. C 119, 23752–23766 (2015).

    CAS  Google Scholar 

  50. 50.

    Rogge, S. M. J. et al. A comparison of barostats for the mechanical characterization of metal-organic frameworks. J. Chem. Theory Comput. 11, 5583–5597 (2015).

    CAS  Google Scholar 

  51. 51.

    VandeVondele, J. et al. Quickstep: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 167, 103–128 (2005).

    CAS  Google Scholar 

  52. 52.

    Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. CP2K: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15–25 (2014).

    CAS  Google Scholar 

  53. 53.

    VandeVondele, J. & Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 127, 114105 (2007).

    Google Scholar 

  54. 54.

    Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    CAS  Google Scholar 

  55. 55.

    Nosé, S. A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys. 52, 255–268 (1984).

    Google Scholar 

  56. 56.

    Nosé, S. A unified formulation of the constant temperature molecular dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Google Scholar 

  57. 57.

    Hoover, W. G. Canonical dynamics: equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    CAS  Google Scholar 

  58. 58.

    Martyna, G. J., Klein, M. L. & Tuckerman, M. Nosé–Hoover chains: the canonical ensemble via continuous dynamics. J. Chem. Phys. 97, 2635–2643 (1992).

    Google Scholar 

  59. 59.

    Martyna, G. J., Tobias, D. J. & Klein, M. L. Constant pressure molecular dynamics algorithms. J. Chem. Phys. 101, 4177–4189 (1994).

    CAS  Google Scholar 

  60. 60.

    Martyna, G. J., Tuckerman, M. E., Tobias, D. J. & Klein, M. L. Explicit reversible integrators for extended systems dynamics. Mol. Phys. 87, 1117–1157 (1996).

    CAS  Google Scholar 

  61. 61.

    Vanduyfhuys, L. et al. Extension of the QuickFF force field protocol for an improved accuracy of structural, vibrational, mechanical and thermal properties of metal-organic frameworks. J. Comput. Chem. 39, 999–1011 (2018).

    CAS  Google Scholar 

  62. 62.

    Vanduyfhuys, L. et al. QuickFF: a program for a quick and easy derivation of force fields for metal-organic frameworks from ab initio input. J. Comput. Chem. 36, 1015–1027 (2015).

    CAS  Google Scholar 

  63. 63.

    Mayo, S. L., Olafson, B. D. & Goddard, W. A. DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990).

    CAS  Google Scholar 

  64. 64.

    Chen, J. & Martínez, T. J. QTPIE: charge transfer with polarization current equalization. A fluctuating charge model with correct asymptotics. Chem. Phys. Lett. 438, 315–320 (2007).

    CAS  Google Scholar 

  65. 65.

    Verstraelen, T. et al. Minimal basis iterative stockholder: atoms in molecules for force-field development. J. Chem. Theory Comput. 12, 3894–3912 (2016).

    CAS  Google Scholar 

  66. 66.

    Chen, J. L., Xue, B., Mahesh, K. & Siepmann, J. I. Molecular simulations probing the thermophysical properties of homogeneously stretched and bubbly water systems. J. Chem. Eng. Data 64, 3755–3771 (2019).

    CAS  Google Scholar 

  67. 67.

    Dubbeldam, D., Calero, S., Ellis, D. E. & Snurr, R. Q. RASPA: molecular simulation software for adsorption and diffusion in flexible nanoporous materials. Mol. Simul. 42, 81–101 (2015).

    Google Scholar 

  68. 68.

    Peng, D.-Y. & Robinson, D. B. A new two-constant equation of state. Ind. Eng. Chem. Fundam. 15, 59–64 (1976).

    CAS  Google Scholar 

  69. 69.

    Ewald, P. P. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. der Phys. 369, 253–287 (1921).

    Google Scholar 

  70. 70.

    Yaff, Yet Another Force Field, v.1.4.2 (Center for Molecular Modeling, 2019); http://molmod.github.io/yaff/index.html

  71. 71.

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Google Scholar 

  72. 72.

    Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    CAS  Google Scholar 

  73. 73.

    Willems, T. F., Rycroft, C. H., Kazi, M., Meza, J. C. & Haranczyk, M. Algorithms and tools for high-throughput geometry-based analysis of crystalline porous materials. Micropor. Mesopor. Mat. 149, 134–141 (2012).

    CAS  Google Scholar 

  74. 74.

    Torrie, G. M. & Valleau, J. P. Nonphysical sampling distributions in Monte Carlo free-energy estimation: umbrella sampling. J. Comput. Phys. 23, 187–199 (1977).

    Google Scholar 

  75. 75.

    Kumar, S., Rosenberg, J. M., Bouzida, D., Swendsen, R. H. & Kollman, P. A. The weighted histogram analysis method for free‐energy calculations on biomolecules. I. The method. J. Comput. Chem. 13, 1011–1021 (1992).

    CAS  Google Scholar 

  76. 76.

    Souaille, M. & Roux, B. Extension to the weighted histogram analysis method: combining umbrella sampling with free energy calculations. Comput. Phys. Commun. 135, 40–57 (2001).

    CAS  Google Scholar 

  77. 77.

    Rogge, S. M. J. Supporting molecular data for high rate nanofluidic energy absorption in porous zeolitic frameworks. Zenodo https://doi.org/10.5281/zenodo.4534252 (2021).

Download references

Acknowledgements

Y.S. and J.-C.T. thank the K.C. Wong Fellowship (Y.S.) and the European Research Council (ERC) Consolidator grant (under the grant agreement no. 771575 PROMOFS (J.-C.T.)) for funding the research. Y.S. also thanks the University of Birmingham for startup funds. S.M.J.R., A.L., S.V. and J.W. thank the Fund for Scientific Research Flanders (FWO, grant nos. 12T3519N (S.M.J.R.), 11D2220N (A.L.), 11U1914N (S.V.) and 1103618 N (J.W.)) and the Research Board of Ghent University (BOF). Funding was also received from the European Union’s Horizon 2020 Research and Innovation Programme (ERC Consolidator grant agreement no. 647755—DYNPOR (2015–2020) (V.V.S.)). We thank the Research Complex at Harwell for access to the materials characterization facilities and T. Johnson at Johnson–Matthey Technology Centre for providing the chabazite material. The computational resources (Stevin Supercomputer Infrastructure) and services used in this work were provided by the VSC (Flemish Supercomputer Centre), funded by Ghent University, the FWO and the Flemish Government—department EWI.

Author information

Affiliations

Authors

Contributions

Y.S. conceived and performed all experiments, with guidance from C.R.S. and J.-C.T. S.M.J.R. performed the force-field-based MD simulations. A.L. performed the ab initio and umbrella sampling MD simulations. S.V. performed the GCMC and canonical Monte Carlo simulations. J.W. derived the ZIF-8 covalent force field, all under the guidance of V.V.S. Y.S., S.M.J.R., J.-C.T. and V.V.S wrote the paper with contributions from all authors.

Corresponding authors

Correspondence to Yueting Sun, Sven M. J. Rogge, Veronique Van Speybroeck or Jin-Chong Tan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Len Barbour, Joern Ilja Siepmann and Dan Zhao for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–93, Tables 1–8 and References 1–97.

Source data

Source Data Fig. 2

Source data for Fig. 2b–e.

Source Data Fig. 3

Source data for Fig. 3c.

Source Data Fig. 4

Source data for Fig. 4b and d.

Source Data Fig. 5

Source data for Fig. 5a–e.

Source Data Fig. 6

Source data for Fig. 6a–d.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sun, Y., Rogge, S.M.J., Lamaire, A. et al. High-rate nanofluidic energy absorption in porous zeolitic frameworks. Nat. Mater. 20, 1015–1023 (2021). https://doi.org/10.1038/s41563-021-00977-6

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing