Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metastable 1T′-phase group VIB transition metal dichalcogenide crystals


Metastable 1T′-phase transition metal dichalcogenides (1T′-TMDs) with semi-metallic natures have attracted increasing interest owing to their uniquely distorted structures and fascinating phase-dependent physicochemical properties. However, the synthesis of high-quality metastable 1T′-TMD crystals, especially for the group VIB TMDs, remains a challenge. Here, we report a general synthetic method for the large-scale preparation of metastable 1T′-phase group VIB TMDs, including WS2, WSe2, MoS2, MoSe2, WS2xSe2(1−x) and MoS2xSe2(1−x). We solve the crystal structures of 1T′-WS2, -WSe2, -MoS2 and -MoSe2 with single-crystal X-ray diffraction. The as-prepared 1T′-WS2 exhibits thickness-dependent intrinsic superconductivity, showing critical transition temperatures of 8.6 K for the thickness of 90.1 nm and 5.7 K for the single layer, which we attribute to the high intrinsic carrier concentration and the semi-metallic nature of 1T′-WS2. This synthesis method will allow a more systematic investigation of the intrinsic properties of metastable TMDs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Crystal structure and characterization of WS2.
Fig. 2: Structural characterization of 1T′-WS2.
Fig. 3: Characterization of 1T′- and 2H-WS2.
Fig. 4: Device configuration and electrical transport properties of devices made of 1T′-WS2 (90.1 nm), 1T′-WSe2 (71.2 nm), 1T′-WS2xSe2(1−x) (x = 0.796) (14.9 nm) and 1T′-WS2xSe2(1−x) (x = 0.472) (50.2 nm).

Data availability

The X-ray crystallographic coordinates for the structure reported in this study have been deposited at the Cambridge Crystallographic Data Centre under deposition numbers CSD 2062455, 2062456, 2062457 and 2062458. These data can be obtained free of charge from Other data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS  Article  Google Scholar 

  2. 2.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  Article  Google Scholar 

  3. 3.

    Yu, Y. et al. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nat. Chem. 10, 638–643 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    Chaturvedi, A. et al. A universal method for rapid and large-scale growth of layered crystals. SmartMat 1, e1011 (2020).

    Article  Google Scholar 

  5. 5.

    Voiry, D., Mohite, A. & Chhowalla, M. Phase engineering of transition metal dichalcogenides. Chem. Soc. Rev. 44, 2702–2712 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Tan, C. et al. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225–6331 (2017).

    CAS  Article  Google Scholar 

  7. 7.

    Zhang, X., Lai, Z., Ma, Q. & Zhang, H. Novel structured transition metal dichalcogenide nanosheets. Chem. Soc. Rev. 47, 3301–3338 (2018).

    CAS  Article  Google Scholar 

  8. 8.

    Guo, C. et al. Observation of superconductivity in 1T′-MoS2 nanosheets. J. Mater. Chem. C 5, 10855–10860 (2017).

    CAS  Article  Google Scholar 

  9. 9.

    Lin, H. et al. Growth of environmentally stable transition metal selenide films. Nat. Mater. 18, 602–607 (2019).

    CAS  Article  Google Scholar 

  10. 10.

    Zhou, J. et al. Large-area and high-quality 2D transition metal telluride. Adv. Mater. 29, 1603471 (2017).

    Article  CAS  Google Scholar 

  11. 11.

    Sung, J. H. et al. Coplanar semiconductor–metal circuitry defined on few-layer MoTe2 via polymorphic heteroepitaxy. Nat. Nanotechnol. 12, 1064–1070 (2017).

    CAS  Article  Google Scholar 

  12. 12.

    Zhou, J. et al. A library of atomically thin metal chalcogenides. Nature 556, 355–359 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Zhang, H. Ultrathin two-dimensional nanomaterials. ACS Nano 9, 9451–9469 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Tan, C. et al. Preparation of high-percentage 1T-phase transition metal dichalcogenide nanodots for electrochemical hydrogen evolution. Adv. Mater. 30, 1705509 (2018).

    Article  CAS  Google Scholar 

  15. 15.

    Wypych, F. & Schollhorn, R. 1T-MoS2, a new metallic modification of molybdenum disulfide. J. Chem. Soc. Chem. Commun. 1386–1388 (1992).

  16. 16.

    Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    CAS  Article  Google Scholar 

  17. 17.

    Voiry, D. et al. Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850–855 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    Zeng, Z. et al. Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. Angew. Chem. Int. Ed. 50, 11093–11097 (2011).

    CAS  Article  Google Scholar 

  19. 19.

    Mahler, B., Hoepfner, V., Liao, K. & Ozin, G. A. Colloidal synthesis of 1T-WS2 and 2H-WS2 nanosheets: applications for photocatalytic hydrogen evolution. J. Am. Chem. Soc. 136, 14121–14127 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Sokolikova, M. S., Sherrell, P. C., Palczynski, P., Bemmer, V. L. & Mattevi, C. Direct solution-phase synthesis of 1T′ WSe2 nanosheets. Nat. Commun. 10, 712 (2019).

    CAS  Article  Google Scholar 

  21. 21.

    Geng, X. et al. Pure and stable metallic phase molybdenum disulfide nanosheets for hydrogen evolution reaction. Nat. Commun. 7, 10672 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    Liu, L. et al. Phase-selective synthesis of 1T′ MoS2 monolayers and heterophase bilayers. Nat. Mater. 17, 1108–1114 (2018).

    CAS  Article  Google Scholar 

  23. 23.

    Lin, Y.-C., Dumcenco, D. O., Huang, Y.-S. & Suenaga, K. Atomic mechanism of the semiconducting-to-metallic phase transition in single-layered MoS2. Nat. Nanotechnol. 9, 391–396 (2014).

    CAS  Article  Google Scholar 

  24. 24.

    Duerloo, K.-A. N., Li, Y. & Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014).

    CAS  Article  Google Scholar 

  25. 25.

    Kang, Y. et al. Plasmonic hot electron induced structural phase transition in a MoS2 monolayer. Adv. Mater. 26, 6467–6471 (2014).

    CAS  Article  Google Scholar 

  26. 26.

    Zink, N. et al. Selective synthesis of hollow and filled fullerene-like (IF) WS2 nanoparticles via metal–organic chemical vapor deposition. Chem. Mater. 19, 6391–6400 (2007).

    CAS  Article  Google Scholar 

  27. 27.

    Gong, Y. et al. Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat. Mater. 13, 1135–1142 (2014).

    CAS  Article  Google Scholar 

  28. 28.

    Li, H. et al. From bulk to monolayer MoS2: evolution of raman scattering. Adv. Funct. Mater. 22, 1385–1390 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    Timoshenko, J., Kuzmin, A. & Purans, J. EXAFS study of hydrogen intercalation into ReO3 using the evolutionary algorithm. J. Phys. Condens. Matter 26, 055401 (2014).

    CAS  Article  Google Scholar 

  30. 30.

    Ye, J. T. et al. Superconducting dome in a gate-tuned band insulator. Science 338, 1193–1196 (2012).

    CAS  Article  Google Scholar 

  31. 31.

    Fatemi, V. et al. Electrically tunable low-density superconductivity in a monolayer topological insulator. Science 362, 926–929 (2018).

    CAS  Article  Google Scholar 

  32. 32.

    Sajadi, E. et al. Gate-induced superconductivity in a monolayer topological insulator. Science 362, 922–925 (2018).

    CAS  Article  Google Scholar 

  33. 33.

    Chi, Z. et al. Superconductivity in pristine 2Ha-MoS2 at ultrahigh pressure. Phys. Rev. Lett. 120, 037002 (2018).

    CAS  Article  Google Scholar 

  34. 34.

    Saito, Y., Nojima, T. & Iwasa, Y. Highly crystalline 2D superconductors. Nat. Rev. Mater. 2, 16094 (2016).

    Article  CAS  Google Scholar 

  35. 35.

    Lu, J. et al. Full superconducting dome of strong Ising protection in gated monolayer WS2. Proc. Natl Acad. Sci. USA 115, 3551–3556 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Costanzo, D., Jo, S., Berger, H. & Morpurgo, A. F. Gate-induced superconductivity in atomically thin MoS2 crystals. Nat. Nanotechnol. 11, 339–344 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    Lu, J. M. et al. Evidence for two-dimensional Ising superconductivity in gated MoS2. Science 350, 1353–1357 (2015).

    CAS  Article  Google Scholar 

  38. 38.

    Taniguchi, K., Matsumoto, A., Shimotani, H. & Takagi, H. Electric-field-induced superconductivity at 9.4 K in a layered transition metal disulphide MoS2. Appl. Phys. Lett. 101, 042603 (2012).

    Article  CAS  Google Scholar 

  39. 39.

    Jo, S., Costanzo, D., Berger, H. & Morpurgo, A. F. Electrostatically induced superconductivity at the surface of WS2. Nano Lett. 15, 1197–1202 (2015).

    CAS  Article  Google Scholar 

  40. 40.

    Shi, W. et al. Superconductivity series in transition metal dichalcogenides by ionic gating. Sci. Rep. 5, 12534 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Zeng, J. et al. Gate-induced interfacial superconductivity in 1T-SnSe2. Nano Lett. 18, 1410–1415 (2018).

    CAS  Article  Google Scholar 

  42. 42.

    Zhang, R. et al. Superconductivity in potassium-doped metallic polymorphs of MoS2. Nano Lett. 16, 629–636 (2016).

    Article  CAS  Google Scholar 

  43. 43.

    Qin, F. et al. Diameter-dependent superconductivity in individual WS2 nanotubes. Nano Lett. 18, 6789–6794 (2018).

    CAS  Article  Google Scholar 

  44. 44.

    Pan, X.-C. et al. Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride. Nat. Commun. 6, 7805 (2015).

    Article  Google Scholar 

  45. 45.

    Sharma, C. H., Surendran, A. P., Varma, S. S. & Thalakulam, M. 2D superconductivity and vortex dynamics in 1T-MoS2. Commun. Phys. 1, 90 (2018).

    CAS  Article  Google Scholar 

  46. 46.

    Cui, J. et al. Transport evidence of asymmetric spin-orbit coupling in few-layer superconducting 1Td-MoTe2. Nat. Commun. 10, 2044 (2019).

    Article  CAS  Google Scholar 

  47. 47.

    Beasley, M. R., Mooij, J. E. & Orlando, T. P. Possibility of vortex–antivortex pair dissociation in two-dimensional superconductors. Phys. Rev. Lett. 42, 1165–1168 (1979).

    CAS  Article  Google Scholar 

  48. 48.

    Skocpol, W. J. & Tinkham, M. Fluctuations near superconducting phase transitions. Rep. Prog. Phys. 38, 1049–1097 (1975).

    CAS  Article  Google Scholar 

  49. 49.

    Fan, Y. J. et al. Quantum superconductor–insulator transition in titanium monoxide thin films with a wide range of oxygen contents. Phys. Rev. B 98, 064501 (2018).

    Article  Google Scholar 

  50. 50.

    Jaeger, H. M., Haviland, D. B., Orr, B. G. & Goldman, A. M. Onset of superconductivity in ultrathin granular metal films. Phys. Rev. B 40, 182–196 (1989).

    CAS  Article  Google Scholar 

  51. 51.

    Yan, R. et al. Thickness dependence of superconductivity in ultrathin NbS2. Appl. Phys. Express 12, 023008 (2019).

    Article  CAS  Google Scholar 

  52. 52.

    Saito, Y., Kasahara, Y., Ye, J., Iwasa, Y. & Nojima, T. Metallic ground state in an ion-gated two-dimensional superconductor. Science 350, 409–413 (2015).

    CAS  Article  Google Scholar 

  53. 53.

    Hebard, A. F. & Paalanen, M. A. Magnetic-field-tuned superconductor–insulator transition in two-dimensional films. Phys. Rev. Lett. 65, 927–930 (1990).

    CAS  Article  Google Scholar 

  54. 54.

    Saito, Y., Nojima, T. & Iwasa, Y. Quantum phase transitions in highly crystalline two-dimensional superconductors. Nat. Commun. 9, 778 (2018).

    Article  CAS  Google Scholar 

  55. 55.

    Chen, Y. et al. Phase engineering of nanomaterials. Nat. Rev. Chem. 4, 243–256 (2020).

    CAS  Article  Google Scholar 

  56. 56.

    Li, H. et al. A universal, rapid method for clean transfer of nanostructures onto various substrates. ACS Nano 8, 6563–6570 (2014).

    Article  CAS  Google Scholar 

  57. 57.

    Du, Y. et al. XAFCA: a new XAFS beamline for catalysis research. J. Synchrotron Rad. 22, 839–843 (2015).

    CAS  Article  Google Scholar 

  58. 58.

    Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Rad. 12, 537–541 (2005).

    CAS  Article  Google Scholar 

  59. 59.

    Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  60. 60.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Article  Google Scholar 

  61. 61.

    Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Article  Google Scholar 

  62. 62.

    Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    CAS  Article  Google Scholar 

  63. 63.

    Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    CAS  Article  Google Scholar 

  64. 64.

    Porezag, D. & Pederson, M. R. Infrared intensities and Raman-scattering activities within density-functional theory. Phys. Rev. B 54, 7830–7836 (1996).

    CAS  Article  Google Scholar 

  65. 65.

    Perdew, J. P. & Wang, Y. Pair-distribution function and its coupling-constant average for the spin-polarized electron gas. Phys. Rev. B 46, 12947–12954 (1992).

    CAS  Article  Google Scholar 

  66. 66.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Article  Google Scholar 

  67. 67.

    Baroni, S., de Gironcoli, S., Dal Corso, A. & Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    CAS  Article  Google Scholar 

  68. 68.

    Paolo, G. et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J. Phys. Condens. Matter 21, 395502 (2009).

    Article  Google Scholar 

  69. 69.

    Hamann, D. R., Schlüter, M. & Chiang, C. Norm-conserving pseudopotentials. Phys. Rev. Lett. 43, 1494–1497 (1979).

    CAS  Article  Google Scholar 

  70. 70.

    Allen, P. B. & Mitrović, B. in Solid State Physics Vol. 37 (eds Henry Ehrenreich et al.) Ch. 1 (Academic Press, 1983).

Download references


H.Z. acknowledges support from ITC via the Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), the Start-Up Grant (project no. 9380100) and grants (project nos. 9610478 and 1886921) from the City University of Hong Kong and the Science Technology and Innovation Committee of Shenzhen Municipality (grant no. JCYJ20200109143412311). Q.H. acknowledges the funding support from the Start-Up Grant (project no. 9610482) from the City University of Hong Kong. Y.S. and Y.M. acknowledge the funding support from the National Natural Science Foundation of China (under grant no. 11534003) and the Program for JLU Science and Technology Innovative Research Team and Science Challenge Project (no. TZ2016001). K.H. and D.V.M.R. acknowledge funding from the Accelerated Materials Development for Manufacturing Program at A*STAR via the AME Programmatic Fund by the Agency for Science, Technology and Research under grant no. A1898b0043. R.V.R. and V.S. acknowledge support by grants from the National Research Foundation, Prime Minister’s Office, Singapore, under its Campus for Research Excellence and Technological Enterprise (CREATE) programme. X.R.W. acknowledges supports from Academic Research Fund Tier 2 (grant no. MOE-T2EP50120-006) from Singapore Ministry of Education. We also thank W. Fernando for his generosity in providing us with his PhD thesis for our reference and S. Morris for the helpful discussions. We acknowledge the Facility for Analysis, Characterization, Testing and Simulation, Nanyang Technological University, Singapore, for use of their electron microscopy and X-ray facilities.

Author information




H.Z. proposed the research direction and guided the project. Z.L. designed and performed the synthesis and characterizations of all the materials. Q.H., W.Z. and Z.S. fabricated and tested the devices. T.H.T. and D.H. helped to synthesize the materials and performed some characterizations. D.V.M.R., Q.H., A.C., V.S., R.V.R. and K.H. performed the superconductivity measurements on the devices and analysed the results. Y.S. and Y.M. performed the DFT calculations on the electronic structures and superconducting gap of the materials. S.X. carried out the XAFS measurements and analysed the data. Y.L. performed the SCXRD measurements and D.-D.Z. refined the data to solve the crystal structures. B.C. carried out the HAADF-STEM imaging of the samples. G.-H.N. performed the Raman measurements of materials. C.L. performed the calculations on the Raman active modes and analysed the Raman data. D.-D.Z. and Z.H. helped to perform X-ray diffraction (XRD) tests on materials. B.L. and Y.C. performed the XPS tests. C.T., Z.Z., Y.Y. and X.R.W. helped to analyse the structural information of the materials. Z.L., Q.H., D.V.M.R., K.H. and H.Z. drafted the manuscript. All authors analysed and discussed the experimental results and checked the manuscript.

Corresponding authors

Correspondence to Kedar Hippalgaonkar or Hua Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–64, Tables 1–7 and Notes 1–5.

Supplementary Data 1

The CIF document of the 1T′-WS2 crystal.

Supplementary Data 2

The CIF document of the 1T′-WSe2 crystal.

Supplementary Data 3

The CIF document of the 1T′-MoS2 crystal.

Supplementary Data 4

The CIF document of the 1T′-MoSe2 crystal.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lai, Z., He, Q., Tran, T.H. et al. Metastable 1T′-phase group VIB transition metal dichalcogenide crystals. Nat. Mater. (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing