Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

TRACTION FORCES

Stress fibres and the cortex work in tandem

Stress fibres form a fully integrated meshwork with the submembranous contractile actin cortex that generates and propagates traction forces across the entire cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Stress fibres collaborate with the submembranous actin cortex to generate traction forces.

panel a reproduced with permission from ref. 13, American Society for Cell Biology; panels bd reproduced with permission from ref. 9, Springer Nature Ltd.

Fig. 2: Stress fibres are mechanically integrated within the submembranous actin cortex.

panel a reproduced with permission from ref. 9, Springer Nature Ltd.

References

  1. Harris, A. K., Stopak, D. & Wild, P. Nature 290, 249–251 (1981).

    Article  CAS  Google Scholar 

  2. Dembo, M. & Wang, Y. L. Biophys. J. 76, 2307–2316 (1999).

    Article  CAS  Google Scholar 

  3. Kumar, S. et al. Biophys. J. 90, 3762–3773 (2006).

    Article  CAS  Google Scholar 

  4. Deguchi, S., Ohashi, T. & Sato, M. J. Biomech. 39, 2603–2610 (2006).

    Article  Google Scholar 

  5. Oakes, P. W. et al. Nat. Commun. 8, 15817 (2017).

    Article  CAS  Google Scholar 

  6. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Cell 126, 677–689 (2006).

    Article  CAS  Google Scholar 

  7. Hotulainen, P. & Lappalainen, P. J. Cell Biol. 173, 383–394 (2006).

    Article  CAS  Google Scholar 

  8. Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. J. Cell Biol. 131, 989–1002 (1995).

    Article  CAS  Google Scholar 

  9. Vignaud, T. et al. Nat. Mater. https://doi.org/10.1038/s41563-020-00825-z (2020).

    Article  Google Scholar 

  10. Chrzanowska-Wodnicka, M. & Burridge, K. J. Cell Biol. 133, 1403–1415 (1996).

    Article  CAS  Google Scholar 

  11. Reymann, A. C., Staniscia, F., Erzberger, A., Salbreux, G. & Grill, S. W. eLife 5, e17807 (2016).

    Article  Google Scholar 

  12. Lehtimäki, J. I., Rajakylä, E. K., Tojkander, S. & Lappalainen, P. eLife 10, e60710 (2021).

    Article  Google Scholar 

  13. Peterson, L. J. et al. Mol. Biol. Cell 15, 3497–3508 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume Charras.

Ethics declarations

Competing interests

The author declares no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charras, G. Stress fibres and the cortex work in tandem. Nat. Mater. 20, 281–283 (2021). https://doi.org/10.1038/s41563-021-00944-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-00944-1

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing