Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries


All-solid-state lithium (Li) metal and lithium-ion batteries (ASSLBs) with inorganic solid-state electrolytes offer improved safety for electric vehicles and other applications. However, current inorganic ASSLB manufacturing technology suffers from high cost, excessive amounts of solid-state electrolyte and conductive additives, and low attainable volumetric energy density. Such a fabrication method involves separate fabrications of sintered ceramic solid-state electrolyte membranes and ASSLB electrodes, which are then carefully stacked and sintered together in a precisely controlled environment. Here we report a disruptive manufacturing technology that offers reduced manufacturing costs and improved volumetric energy density in all solid cells. Our approach mimics the low-cost fabrication of commercial Li-ion cells with liquid electrolytes, except that we utilize solid-state electrolytes with low melting points that are infiltrated into dense, thermally stable electrodes at moderately elevated temperatures (~300 °C or below) in a liquid state, and which then solidify during cooling. Nearly the same commercial equipment could be used for electrode and cell manufacturing, which substantially reduces a barrier for industry adoption. This energy-efficient method was used to fabricate inorganic ASSLBs with LiNi0.33Mn0.33Co0.33O2 cathodes and both Li4Ti5O12 and graphite anodes. The promising performance characteristics of such cells open new opportunities for the accelerated adoption of ASSLBs for safer electric transportation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics of melt infiltration.
Fig. 2: Characterization of the electrodes’ morphology after the melt infiltration.
Fig. 3: Microstructural and thermal characterization of the SSE and the electrode materials before and after the melt infiltration.
Fig. 4: Electrochemical performance of NCM111/LTO ASSLBs fabricated by melt-infiltration technology.
Fig. 5: Electrochemical performance of NCM111/graphite ASSLBs fabricated by melt-infiltration technology.

Similar content being viewed by others

Data availability

The data used in this study are available from the authors upon reasonable request.


  1. Manthiram, A., Yu, X. & Wang, S. Lithium battery chemistries enabled by solid-state electrolytes. Nat. Rev. Mater. 2, 16103 (2017).

    Article  CAS  Google Scholar 

  2. Xu, K. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114, 11503–11618 (2014).

    Article  CAS  Google Scholar 

  3. Kato, Y. et al. High-power all-solid-state batteries using sulfide superionic conductors. Nat. Energy 1, 16030 (2016).

    Article  CAS  Google Scholar 

  4. Huang, Q. et al. Cycle stability of conversion-type iron fluoride lithium battery cathode at elevated temperatures in polymer electrolyte composites. Nat. Mater. 18, 1343–1349 (2019).

    Article  CAS  Google Scholar 

  5. Wan, J. Y. et al. Ultrathin, flexible, solid polymer composite electrolyte enabled with aligned nanoporous host for lithium batteries. Nat. Nanotechnol. 14, 705–711 (2019).

    Article  CAS  Google Scholar 

  6. Han, F. D. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    Article  CAS  Google Scholar 

  7. Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017).

    Article  CAS  Google Scholar 

  8. Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

    Article  Google Scholar 

  9. Zhang, J. et al. All-solid-state batteries with slurry coated LiNi0.8Co0.1Mn0.1O2 composite cathode and Li6PS5Cl electrolyte: effect of binder content. J. Power Sources 391, 73–79 (2018).

    Article  CAS  Google Scholar 

  10. Nykvist, B. & Nilsson, M. Rapidly falling costs of battery packs for electric vehicles. Nat. Clim. Change 5, 329–332 (2015).

    Article  Google Scholar 

  11. Auvergniot, J. et al. Interface stability of argyrodite Li6PS5Cl toward LiCoO2, LiNi1/3Co1/3Mn1/3O2, and LiMn2O4 in bulk all-solid-state batteries. Chem. Mater. 29, 3883–3890 (2017).

    Article  CAS  Google Scholar 

  12. Takada, K. et al. Solid-state lithium battery with graphite anode. Solid State Ion. 158, 269–274 (2003).

    Article  CAS  Google Scholar 

  13. Yersak, T. A., Salvador, J. R., Pieczonka, N. P. W. & Cai, M. Dense, melt cast sulfide glass electrolyte separators for Li metal batteries. J. Electrochem. Soc. 166, A1535–A1542 (2019).

    Article  Google Scholar 

  14. Tippens, J. et al. Visualizing chemomechanical degradation of a solid-state battery electrolyte. ACS Energy Lett. 4, 1475–1483 (2019).

    Article  CAS  Google Scholar 

  15. McCloskey, B. D. Attainable gravimetric and volumetric energy density of Li–S and Li ion battery cells with solid separator-protected Li metal anodes. J. Phys. Chem. Lett. 6, 4581–4588 (2015).

    Article  CAS  Google Scholar 

  16. Trevey, J. E., Jung, Y. S. & Lee, S.-H. High lithium ion conducting Li2S–GeS2–P2S5 glass–ceramic solid electrolyte with sulfur additive for all solid-state lithium secondary batteries. Electrochim. Acta 56, 4243–4247 (2011).

    Article  CAS  Google Scholar 

  17. Zhang, Q. et al. Sulfide-based solid-state electrolytes: synthesis, stability, and potential for all-solid-state batteries. Adv. Mater. 31, 1901131 (2019).

    Article  CAS  Google Scholar 

  18. Kim, D. H. et al. Infiltration of solution-processable solid electrolytes into conventional Li-ion-battery electrodes for all-solid-state Li-ion batteries. Nano Lett. 17, 3013–3020 (2017).

    Article  CAS  Google Scholar 

  19. Hitz, G. T. et al. High-rate lithium cycling in a scalable trilayer Li-garnet-electrolyte architecture. Mater. Today 22, 50–57 (2019).

    Article  CAS  Google Scholar 

  20. Song, A.-Y. et al. Protons enhance conductivities in lithium halide hydroxide/lithium oxyhalide solid electrolytes by forming rotating hydroxy groups. Adv. Energy Mater. 8, 1700971 (2018).

    Article  Google Scholar 

  21. Schwering, G., Honnerscheid, A., van Wullen, L. & Jansen, M. High lithium ionic conductivity in the lithium halide hydrates Li3-n(OHn)Cl (0.83 ≤ n ≤ 2) and Li3-n(OHn)Br (1 ≤ n ≤ 2) at ambienttemperatures. ChemPhysChem 4, 343–348 (2003).

    Article  CAS  Google Scholar 

  22. Dawson, J. A. et al. Elucidating lithium-ion and proton dynamics in anti-perovskite solid electrolytes. Energy Environ. Sci. 11, 2993–3002 (2018).

    Article  CAS  Google Scholar 

  23. Kerman, K., Luntz, A., Viswanathan, V., Chiang, Y. M. & Chen, Z. B. Review—practical challenges hindering the development of solid state Li ion batteries. J. Electrochem Soc. 164, A1731–A1744 (2017).

    Article  CAS  Google Scholar 

  24. Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018).

    Article  CAS  Google Scholar 

  25. Song, A. Y. et al. Understanding Li-ion dynamics in lithium hydroxychloride (Li2OHCl) solid state electrolyte via addressing the role of protons. Adv. Energy Mater. (2020).

  26. Hood, Z. D., Wang, H., Pandian, A. S., Keum, J. K. & Liang, C. D. Li2OHCl crystalline electrolyte for stable metallic lithium anodes. J. Am. Chem. Soc. 138, 1768–1771 (2016).

    Article  CAS  Google Scholar 

  27. Li, Y. T. et al. Fluorine-doped antiperovskite electrolyte for all-solid-state lithium-ion batteries. Angew. Chem. Int. Ed. 55, 9965–9968 (2016).

    Article  CAS  Google Scholar 

  28. Tomita, Y., Matsushita, H., Kobayashi, K., Maeda, Y. & Yamada, K. Substitution effect of ionic conductivity in lithium ion conductor, Li3InBr6–xClx. Solid State Ion. 179, 867–870 (2008).

    Article  CAS  Google Scholar 

  29. Li, X. N. et al. Air-stable Li3InCl6 electrolyte with high voltage compatibility for all-solid-state batteries. Energ. Environ. Sci. 12, 2665–2671 (2019).

    Article  CAS  Google Scholar 

  30. Yamada, K., Kumano, K. & Okuda, T. Lithium superionic conductors Li3InBr6 and LiInBr4 studied by 7Li, 115In NMR. Solid State Ion. 177, 1691–1695 (2006).

    Article  CAS  Google Scholar 

  31. Li, X. N. et al. Water-mediated synthesis of a superionic halide solid electrolyte. Angew. Chem. Int. Ed. 58, 16427–16432 (2019).

    Article  CAS  Google Scholar 

  32. Asano, T. et al. Solid halide electrolytes with high lithium-ion conductivity for application in 4 V class bulk-type all-solid-state batteries. Adv. Mater. (2018).

  33. Maekawa, H. et al. Halide-stabilized LiBH4, a room-temperature lithium fast-ion conductor. J. Am. Chem. Soc. 131, 894–895 (2009).

    Article  CAS  Google Scholar 

  34. Unemoto, A. et al. Pseudo-binary electrolyte, LiBH4-LiCl, for bulk-type all-solid-state lithium-sulfur battery. Nanotechnology (2015).

  35. Unemoto, A. et al. Stable interface formation between TiS2 and LiBH4 in bulk-type all-solid-state lithium batteries. Chem. Mater. 27, 5407–5416 (2015).

    Article  CAS  Google Scholar 

  36. Lu, F. Q. et al. A high-performance Li–B–H electrolyte for all-solid-state Li batteries. Adv. Funct. Mater. (2019).

  37. Ley, M. B. et al. LiCe(BH4)3Cl, a new lithium-ion conductor and hydrogen storage material with isolated tetranuclear anionic clusters. Chem. Mater. 24, 1654–1663 (2012).

    Article  CAS  Google Scholar 

  38. Duchêne, L., Remhof, A., Hagemann, H. & Battaglia, C. Status and prospects of hydroborate electrolytes for all-solid-state batteries. Energy Storage Mater. 25, 782–794 (2020).

    Article  Google Scholar 

  39. Sun, Y. K., Cho, S. W., Myung, S. T., Amine, K. & Prakash, J. Effect of AlF3 coating amount on high voltage cycling performance of LiCoO2. Electrochim. Acta 53, 1013–1019 (2007).

    Article  CAS  Google Scholar 

  40. Kim, J. S. et al. The electrochemical stability of spinel electrodes coated with ZrO2, Al2O3, and SiO2 from colloidal suspensions. J. Electrochem Soc. 151, A1755–A1761 (2004).

    Article  CAS  Google Scholar 

  41. Hall, D. S., Gauthier, R., Eldesoky, A., Murray, V. S. & Dahn, J. R. New chemical insights into the beneficial role of Al2O3 cathode coatings in lithium-ion cells. ACS Appl. Mater. Interfaces 11, 14095–14100 (2019).

    Article  CAS  Google Scholar 

  42. Dupre, N., Martin, J. F., Guyomard, D., Yamada, A. & Kanno, R. Detection of surface layers using 7Li MAS NMR. J. Mater. Chem. 18, 4266–4273 (2008).

    Article  CAS  Google Scholar 

  43. Liu, B. Y. et al. Garnet solid electrolyte protected Li-metal batteries. ACS Appl. Mater. Interfaces 9, 18809–18815 (2017).

    Article  CAS  Google Scholar 

  44. Oh, D. Y. et al. Excellent compatibility of solvate ionic liquids with sulfide solid electrolytes: toward favorable ionic contacts in bulk-type all-solid-state lithium-ion batteries. Adv. Energy Mater. (2015).

  45. Zhang, Z. et al. A self-forming composite electrolyte for solid-state sodium battery with ultralong cycle life. Adv. Energy Mater. 7, 1601196 (2017).

    Article  Google Scholar 

  46. Strauss, F. et al. Rational design of quasi zero-strain NCM cathode materials for minimizing volume change effects in all-solid-state batteries. ACS Mater. Lett. (2019).

  47. Sugumar, M. K., Yamamoto, T., Motoyama, M. & Iriyama, Y. Room temperature synthesis of anti-perovskite structured Li2OHBr. Solid State Ion. 349, 115298 (2020).

    Article  CAS  Google Scholar 

  48. Lin, S.-C. & Burks, S. J. Compatible polyvinylidene fluoride blends with polymers containing imide moieties. US patent 5,959,022 (1999).

Download references


This work was mostly supported by Sila Nanotechnologies. We thank the Materials Characterization Center (MCF) at Georgia Tech.

Author information

Authors and Affiliations



Y.X. performed battery assembly and electrochemical tests; Y.X., K.T., A.N., A.S., X.R., A.M., A.J., S.H. and H.L. performed materials synthesis and characterization; Y.X., K.T., A.S. and G.Y. interpreted the experimental results and wrote the paper. G.Y. conceived the idea.

Corresponding author

Correspondence to Gleb Yushin.

Ethics declarations

Competing interests

G.Y. is a stockholder of Sila Nanotechnologies.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13 and caption of Video 1.

Supplementary Video 1

Melt-infiltration process of SSE into an NCM111 electrode.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Y., Turcheniuk, K., Narla, A. et al. Electrolyte melt infiltration for scalable manufacturing of inorganic all-solid-state lithium-ion batteries. Nat. Mater. 20, 984–990 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing