Abstract
Two-dimensional electrons confined to GaAs quantum wells are hallmark platforms for probing electron–electron interactions. Many key observations have been made in these systems as sample quality has improved over the years. Here, we present a breakthrough in sample quality via source-material purification and innovation in GaAs molecular beam epitaxy vacuum chamber design. Our samples display an ultra-high mobility of 44 × 106 cm2 V–1 s–1 at an electron density of 2.0 × 1011 cm–2. These results imply only 1 residual impurity for every 1010 Ga/As atoms. The impact of such low impurity concentration is manifold. Robust stripe and bubble phases are observed, and several new fractional quantum Hall states emerge. Furthermore, the activation gap (Δ) of the fractional quantum Hall state at the Landau-level filling (ν) = 5/2, which is widely believed to be non-Abelian and of potential use for topological quantum computing, reaches Δ ≈ 820 mK. We expect that our results will stimulate further research on interaction-driven physics in a two-dimensional setting and substantially advance the field.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H2-production
Nature Communications Open Access 03 October 2022
-
Particle-hole symmetry and the reentrant integer quantum Hall Wigner solid
Communications Physics Open Access 10 September 2021
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
Data supporting the results in this paper and the Supplementary Information are available on request to the corresponding author. Source data are provided with this paper.
References
Tsui, D. C., Stormer, H. L. & Gossard, A. C. Two-dimensional magnetotransport in the extreme quantum limit. Phys. Rev. Lett. 48, 1559–1562 (1982).
Willett, R. et al. Observation of an even-denominator quantum number in the fractional quantum Hall effect. Phys. Rev. Lett. 59, 1776–1779 (1987).
Andrei, E. Y. et al. Observation of a magnetically induced Wigner solid. Phys. Rev. Lett. 60, 2765–2768 (1988).
Jiang, H. W. et al. Quantum liquid versus electron solid around ν = 1/5 Landau-level filling. Phys. Rev. Lett. 65, 633–636 (1990).
Goldman, V. J., Santos, M., Shayegan, M. & Cunningham, J. E. Evidence for two-dimensional quantum Wigner crystal. Phys. Rev. Lett. 65, 2189–2192 (1990).
Deng, H. et al. Commensurability oscillations of composite fermions induced by the periodic potential of a Wigner crystal. Phys. Rev. Lett. 117, 096601 (2016).
Lilly, M. P., Cooper, K. B., Eisenstein, J. P., Pfeiffer, L. N. & West, K. W. Evidence for an anisotropic state of two-dimensional electrons in high Landau levels. Phys. Rev. Lett. 82, 394–397 (1999).
Du, R. R. et al. Strongly anisotropic transport in higher two-dimensional Landau levels. Solid State Commun. 109, 389–394 (1999).
Eisenstein, J. P., Cooper, K. B., Pfeiffer, L. N. & West, K. W. Insulating and fractional quantum Hall states in the first excited Landau level. Phys. Rev. Lett. 88, 076801 (2002).
Shayegan, M. in High Magnetic Fields: Science and Technology Vol. 3 (eds Herlach, F. & Miura, N.) 31–60 (World Scientific, 2006).
Jain, J. K. Composite Fermions (Cambridge Univ. Press, 2007).
Lay, T. S. et al. High-quality two-dimensional electron system confined in an AlAs quantum well. Appl. Phys. Lett. 62, 3120–3122 (1993).
de Poortere, E. P. et al. Enhanced electron mobility and high order fractional quantum Hall states in AlAs quantum wells. Appl. Phys. Lett. 80, 1583–1585 (2002).
Shayegan, M. et al. Two-dimensional electrons occupying multiple valleys in AlAs. Phys. Status Solidi B 243, 3629–3642 (2006).
Bishop, N. C. et al. Valley polarization and susceptibility of composite fermions around a filling factor ν = 3/2. Phys. Rev. Lett. 98, 266404 (2007).
Chung, Y. J. et al. Multivalley two-dimensional electron system in an AlAs quantum well with mobility exceeding 2 x 106 cm2V-1s-1. Phys. Rev. Mater. 2, 071001R (2018).
Hossain, M. S. et al. Unconventional anisotropic even-denominator fractional quantum Hall state in a system with mass anisotropy. Phys. Rev. Lett. 121, 256601 (2018).
Lai, K. et al. Two-flux composite fermion series of the fractional quantum Hall states in strained Si. Phys. Rev. Lett. 93, 156805 (2004).
Kott, T. M., Hu, B., Brown, S. H. & Kane, B. E. Valley-degenerate two-dimensional electrons in the lowest Landau level. Phys. Rev. B 89, 041107R (2014).
Du, X., Skachko, I., Duerr, F., Luican, A. & Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).
Bolotin, K. I., Ghahari, F., Shulman, M. D., Stormer, H. L. & Kim, P. Observation of the fractional quantum Hall effect in graphene. Nature 462, 196–199 (2009).
Dean, C. R. et al. Multicomponent fractional quantum Hall effect in graphene. Nat. Phys. 7, 693–696 (2011).
Zibrov, A. A. et al. Even-denominator fractional quantum Hall states at an isospin transition in monolayer graphene. Nat. Phys. 14, 930–935 (2018).
Polshyn, H. et al. Quantitative transport measurements of fractional quantum Hall energy gaps in edgeless graphene devices. Phys. Rev. Lett. 121, 226801 (2018).
Tsukazaki, A. et al. Observation of the fractional quantum Hall effect in an oxide. Nat. Mater. 9, 889–893 (2010).
Falson, J. et al. Even-denominator fractional quantum Hall physics in ZnO. Nat. Phys. 11, 347–351 (2015).
Shi, Q., Zudov, M. A., Morrison, C. & Myronov, M. Spinless composite fermions in an ultrahigh-quality strained Ge quantum well. Phys. Rev. B 91, 241303R (2015).
Mironov, O. A. et al. Fractional quantum Hall states in a Ge quantum well. Phys. Rev. Lett. 116, 176802 (2016).
Shi, Q. et al. Odd- and even-denominator fractional quantum Hall states in monolayer WSe2. Nat. Nanotechnol. 15, 569–573 (2020).
Friess, B. et al. Negative permittivity in bubble and stripe phases. Nat. Phys. 13, 1124–1129 (2017).
Hossain, M. S. et al. Bloch ferromagnetism of composite fermions. Nat. Phys. https://doi.org/10.1038/s41567-020-1000-z (2020).
Pfeiffer, L. & West, K. W. The role of MBE in recent quantum Hall effect physics discoveries. Physica E 20, 57–64 (2003).
Umansky, V. et al. MBE growth of ultra-low disorder 2DEG with mobility exceeding 35x106 cm2 /V s. J. Cryst. Growth 311, 1658–1661 (2009).
Schlom, D. G. & Pfeiffer, L. N. Upward mobility rocks! Nat. Mater. 9, 881–883 (2010).
Gardner, G. C., Fallahi, S., Watson, J. D. & Manfra, M. J. Modified MBE hardware and techniques and role of gallium purity for attainment of two dimensional electron gas mobility >35x106 cm2 /V s in GaAs/AlGaAs quantum wells grown by MBE. J. Cryst. Growth 441, 71–77 (2016).
Hwang, E. H. & das Sarma, S. Limit to two-dimensional mobility in modulation-doped GaAs quantum structures: how to achieve a mobility of 100 million. Phys. Rev. B 77, 235437 (2008).
das Sarma, S., Hwang, E. H., Kodiyalam, S., Pfeiffer, L. N. & West, K. W. Transport in two-dimensional modulation-doped semiconductor structures. Phys. Rev. B 91, 205304 (2015).
Sammon, M., Zudov, M. A. & Shklovskii, B. I. Mobility and quantum mobility of modern GaAs/AlGaAs heterostructures. Phys. Rev. Mater. 2, 064604 (2018).
Schlapfer, F., Dietsche, W., Reichl, C., Faelt, S. & Wegscheider, W. Photoluminescence and the gallium problem for highest-mobility GaAs/AlGaAs-based 2d electron gases. J. Cryst. Growth 442, 114–120 (2016).
Chung, Y. J., Baldwin, K. W., West, K. W., Shayegan, M. & Pfeiffer, L. N. Surface segregation and the Al problem in GaAs quantum wells. Phys. Rev. Mater. 2, 034006 (2018).
Chung, Y. J. et al. Working principles of doping-well structures for high-mobility two-dimensional electron systems. Phys. Rev. Mater. 4, 044003 (2020).
Pan, W., Baldwin, K. W., West, K. W., Pfeiffer, L. N. & Tsui, D. C. Fractional quantum Hall effect at Landau level filling ν = 4/11. Phys. Rev. B 91, 041301R (2015).
Shayegan, M., Goldman, V. J., Jiang, C., Sajoto, T. & Santos, M. Growth of low-density two-dimensional electron system with very high mobility by molecular beam epitaxy. Appl. Phys. Lett. 52, 1086–1088 (1988).
Pfeiffer, L., West, K. W., Stormer, H. L. & Baldwin, K. W. Electron mobilities exceeding 107 cm2 /V s in modulation-doped GaAs. Appl. Phys. Lett. 55, 1888–1890 (1989).
Sajoto, T., Suen, Y. W., Engel, L. W., Santos, M. B. & Shayegan, M. Fractional quantum Hall effect in very-low-density GaAs/AlxGa1-xAs heterostructures. Phys. Rev. B 41, 8449–8460 (1990).
Gold, A. Temperature dependence of mobility in AlxGa1-x/GaAs heterostructures for impurity scattering. Phys. Rev. B 41, 8537–8540 (1990).
Watson, J. D., Csáthy, G. A. & Manfra, M. J. Impact of heterostructure design on transport properties in the second Landau level of in situ back-gated two-dimensional electron gases. Phys. Rev. Appl. 3, 064004 (2015).
Nayak, C., Simon, S. H., Stern, A., Freedman, M. & das Sarma, S. Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008).
Willett, R. L., Pfeiffer, L. N. & West, K. W. Measurement of filling factor 5/2 quasiparticle interference with observation of charge e/4 and e/2 period oscillations. Proc. Natl Acad. Sci. USA 106, 8853–8858 (2009).
Ro, D. et al. Electron bubbles and the structure of the orbital wave function. Phys. Rev. B 99, 201111R (2019).
Acknowledgements
We acknowledge support through the National Science Foundation (grants DMR 1709076 and ECCS 1906253) for measurements and the National Science Foundation (grant MRSEC DMR 1420541), the Gordon and Betty Moore Foundation’s EPiQS programme (grant GBMF9615 to L.N.P.) and the Department of Energy Basic Energy Sciences (grant DE-FG02-00-ER45841) for sample fabrication and characterization.
Author information
Authors and Affiliations
Contributions
Y.J.C. and L.N.P. conceived the work. K.W.B., K.W.W. and L.N.P. designed and built the MBE chamber. Y.J.C., K.W.B., K.W.W. and L.N.P. designed, grew and evaluated the quality of all samples at T ≈ 0.3 K. K.A.V.-R. and P.T.M. performed the dilution refrigerator measurements. Y.J.C. and M.S. wrote the manuscript with input from all co-authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Materials thanks Joseph Falson, Minjoo Lee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–4, Discussion and Table 1.
Source data
Source Data Fig. 1
Numerical raw data.
Source Data Fig. 2
Numerical raw data.
Source Data Fig. 3
Numerical raw data.
Source Data Fig. 4
Numerical raw data.
Rights and permissions
About this article
Cite this article
Chung, Y.J., Villegas Rosales, K.A., Baldwin, K.W. et al. Ultra-high-quality two-dimensional electron systems. Nat. Mater. 20, 632–637 (2021). https://doi.org/10.1038/s41563-021-00942-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-021-00942-3
This article is cited by
-
Understanding and prediction of metastable single-layer metallene oxides
Science China Materials (2023)
-
Dual-density waves with neutral and charged dipolar excitons of GaAs bilayers
Nature Materials (2022)
-
Giant magnon spin conductivity in ultrathin yttrium iron garnet films
Nature Materials (2022)
-
Coupling of nanocrystal hexagonal array and two-dimensional metastable substrate boosts H2-production
Nature Communications (2022)
-
Particle-hole symmetry and the reentrant integer quantum Hall Wigner solid
Communications Physics (2021)