Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Efficient and low-voltage vertical organic permeable base light-emitting transistors

Abstract

Organic light-emitting transistors, three-terminal devices combining a thin-film transistor with a light-emitting diode, have generated increasing interest in organic electronics. However, increasing their efficiency while keeping the operating voltage low still remains a key challenge. Here, we demonstrate organic permeable base light-emitting transistors; these three-terminal vertical optoelectronic devices operate at driving voltages below 5.0 V; emit in the red, green and blue ranges; and reach, respectively, peak external quantum efficiencies of 19.6%, 24.6% and 11.8%, current efficiencies of 20.6 cd A–1, 90.1 cd A–1 and 27.1 cd A–1 and maximum luminance values of 9,833 cd m–2, 12,513 cd m–2 and 4,753 cd m–2. Our simulations demonstrate that the nano-pore permeable base electrode located at the centre of the device, which forms a distinctive optical microcavity and regulates charge carrier injection and transport, is the key to the good performance obtained. Our work paves the way towards efficient and low-voltage organic light-emitting transistors, useful for power-efficient active matrix displays and solid-state lighting.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Fabrication of organic permeable base light-emitting transistors.
Fig. 2: OPB-LET device operation under low driving voltages.
Fig. 3: Efficient and reproducible red, green and blue OPB-LETs by exciton and photon engineering.
Fig. 4: TCAD electrical simulations.
Fig. 5: Optical simulation for present OPB-LET architecture.

Data availability

All the data that support this study are included in this article and its Supplementary Information files. The data that support the findings of this study are also available from the corresponding author upon reasonable request. Source data are provided with this paper.

References

  1. 1.

    Burroughes, J. H. et al. Light-emitting diodes based on conjugated polymers. Nature 347, 539–541 (1990).

    CAS  Google Scholar 

  2. 2.

    Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    CAS  Google Scholar 

  3. 3.

    Reineke, S. et al. White organic light-emitting diodes with fluorescent tube efficiency. Nature 459, 234–238 (2009).

    CAS  Google Scholar 

  4. 4.

    Yonebayashi, Y. et al. High refresh rate and low power consumption AMOLED panel using top-gate n-oxide and p-LTPS TFTs. J. Soc. Inf. Disp. 28, 350–359 (2020).

    CAS  Google Scholar 

  5. 5.

    Zaumseil, J. & Sirringhaus, H. Electron and ambipolar transport in organic field-effect transistors. Chem. Rev. 107, 1296–1323 (2007).

    CAS  Google Scholar 

  6. 6.

    Muccini, M. A bright future for organic field-effect transistors. Nat. Mater. 5, 605–613 (2006).

    CAS  Google Scholar 

  7. 7.

    Cicoira, F. & Santato, C. Organic light emitting field effect transistors: advances and perspectives. Adv. Funct. Mater. 17, 3421–3434 (2007).

    CAS  Google Scholar 

  8. 8.

    Zhang, C., Chen, P. & Hu, W. Organic light-emitting transistors: materials, device configurations, and operations. Small 12, 1252–1294 (2016).

    CAS  Google Scholar 

  9. 9.

    Liu, C.-F., Liu, X., Lai, W.-Y. & Huang, W. Organic light-emitting field-effect transistors: device geometries and fabrication techniques. Adv. Mater. 30, 1802466 (2018).

    Google Scholar 

  10. 10.

    Hepp, A. et al. Light-emitting field-effect transistor based on tetracene thin film. Phys. Rev. Lett. 91, 157406 (2003).

    Google Scholar 

  11. 11.

    Santato, C., Cicoira, F. & Martel, R. Spotlight on organic transistors. Nat. Photon. 5, 392–393 (2011).

    CAS  Google Scholar 

  12. 12.

    Zaumseil, J., Friend, R. H. & Sirringhaus, H. Spatial control of the recombination zone in an ambipolar light-emitting organic transistor. Nat. Mater. 5, 69–74 (2005).

    Google Scholar 

  13. 13.

    Zaumseil, J., Donley, C. L., Kim, J.-S., Friend, R. H. & Sirringhaus, H. Efficient top-gate, ambipolar, light-emitting field-effect transistors based on a green-light-emitting polyfluorene. Adv. Mater. 18, 2708–2712 (2006).

    CAS  Google Scholar 

  14. 14.

    Hsu, B. B. Y. et al. Control of efficiency, brightness, and recombination zone in light-emitting field effect transistors. Adv. Mater. 24, 1171–1175 (2012).

    CAS  Google Scholar 

  15. 15.

    Swensen, J. S., Soci, C. & Heeger, A. J. Light emission from an ambipolar semiconducting polymer field-effect transistor. Appl. Phys. Lett. 87, 253511 (2005).

    Google Scholar 

  16. 16.

    Bisri, S. Z. et al. High mobility and luminescent efficiency in organic single-crystal light-emitting transistors. Adv. Funct. Mater. 19, 1728–1735 (2009).

    CAS  Google Scholar 

  17. 17.

    Capelli, R. et al. Interface functionalities in multilayer stack organic light emitting transistors (OLETs). Adv. Funct. Mater. 24, 5603–5613 (2014).

    CAS  Google Scholar 

  18. 18.

    Zaumseil, J., Donley, C. L., Kim, J. S., Friend, R. H. & Sirringhaus, H. Efficient top-gate, ambipolar, light-emitting field-effect transistors based on a green-light-emitting polyfuorene. Adv. Mater. 18, 2708–2712 (2006).

    CAS  Google Scholar 

  19. 19.

    Takenobu, T. et al. High current density in light-emitting transistors of organic single crystals. Phys. Rev. Lett. 100, 066601 (2008).

    Google Scholar 

  20. 20.

    Hou, L. et al. Optically switchable organic light-emitting transistors. Nat. Nanotechnol. 14, 347–353 (2019).

    CAS  Google Scholar 

  21. 21.

    Zaumseil, J. et al. Quantum efficiency of ambipolar light-emitting polymer field-effect transistors. J. Appl. Phys. 103, 064517 (2008).

    Google Scholar 

  22. 22.

    Namdas, E. B., Ledochowitsch, P., Yuen, J. D., Moses, D. & Heeger, A. J. High performance light emitting transistors. Appl. Phys. Lett. 92, 183304 (2008).

    Google Scholar 

  23. 23.

    Capelli, R. et al. Organic light-emitting transistors with an efficiency that outperforms the equivalent light-emitting diodes. Nat. Mater. 9, 496–503 (2010).

    CAS  Google Scholar 

  24. 24.

    Maiorano, V., Bramanti, A., Carallo, S., Cingolani, R. & Gigli, G. Organic light emitting field effect transistors based on an ambipolar p-i-n layered structure. Appl. Phys. Lett. 96, 133305 (2010).

    Google Scholar 

  25. 25.

    Namdas, E. B. et al. Organic light emitting complementary inverters. Appl. Phys. Lett. 96, 043304 (2010).

    Google Scholar 

  26. 26.

    Gwinner, M. C. et al. Highly efficient single-layer polymer ambipolar light-emitting field-effect transistors. Adv. Mater. 24, 2728–2734 (2012).

    CAS  Google Scholar 

  27. 27.

    Chaudhry, M. et al. Organic light-emitting transistors: advances and perspectives. Adv. Funct. Mater. 30, 1905282 (2019).

    Google Scholar 

  28. 28.

    Chaudhry, M. et al. Low-voltage solution-processed hybrid light-emitting transistors. ACS Appl. Mater. Interfaces 10, 18445–18449 (2018).

    Google Scholar 

  29. 29.

    Ahmad, V. et al. High EQE and high brightness solution-processed TADF light-emitting transistors and OLEDs. Adv. Optical Mater. 8, 2000554 (2020).

    CAS  Google Scholar 

  30. 30.

    Yamauchi, H., Iizuka, M. & Kudo, K. Fabrication of vertical organic light-emitting transistor using ZnO thin film. Jpn J. Appl. Phys. 46, 2678–2682 (2007).

    CAS  Google Scholar 

  31. 31.

    Xu, Z., Li, S. H., Ma, L., Li, G. & Yang, Y. Vertical organic light emitting transistor. Appl. Phys. Lett. 91, 092911 (2007).

    Google Scholar 

  32. 32.

    Nakamura, K. et al. Improvement of metal–insulator–semiconductor-type organic light-emitting transistors. Jpn J. Appl. Phys. 47, 1889–1893 (2008).

    CAS  Google Scholar 

  33. 33.

    McCarthy, M. A. et al. Low-voltage, low-power, organic light-emitting transistors for active matrix displays. Science 332, 570–573 (2011).

    CAS  Google Scholar 

  34. 34.

    Yu, H., Dong, Z., Guo, J., Kim, D. & So, F. Vertical organic field-effect transistors for integrated optoelectronic applications. ACS Appl. Mater. Interfaces 8, 10430–10435 (2016).

    CAS  Google Scholar 

  35. 35.

    Yu, H., Ho, S., Barange, N., Larrabee, R. & So, F. Semi-transparent vertical organic light-emitting transistors. Org. Electron. 55, 126–132 (2018).

    CAS  Google Scholar 

  36. 36.

    Lee, G. et al. Vertical organic light-emitting transistor showing a high current on/off ratio through dielectric encapsulation for the effective charge pathway. J. Appl. Phys. 121, 024502 (2017).

    Google Scholar 

  37. 37.

    Klinger, P. et al. Organic power electronics: transistor operation in the kA/cm2 regime. Sci. Rep. 7, 44713 (2017).

    CAS  Google Scholar 

  38. 38.

    Kheradmand-Boroujeni, B. et al. A pulse-biasing small-signal measurement technique enabling 40 MHz operation of vertical organic transistors. Sci. Rep. 8, 7643 (2018).

    Google Scholar 

  39. 39.

    Dollinger, F. et al. Electrically stable organic permeable base transistors for display applications. Adv. Electron. Mater. 5, 1900576 (2019).

    CAS  Google Scholar 

  40. 40.

    Schubert, S., Meiss, J., Müller-Meskamp, L. & Leo, K. Improvement of transparent metal top electrodes for organic solar cells by introducing a high surface energy seed layer. Adv. Energy Mater. 3, 438–444 (2013).

    CAS  Google Scholar 

  41. 41.

    Lenk, S. et al. White organic light-emitting diodes with 4 nm metal electrode. Appl. Phys. Lett. 107, 163302 (2015).

    Google Scholar 

  42. 42.

    Dollinger, F. et al. Vertical organic thin-film transistors with an anodized permeable base for very low leakage current. Adv. Mater. 31, 1900917 (2019).

    Google Scholar 

  43. 43.

    Kim, K.-H., Moon, C.-K., Lee, J.-H., Kim, S.-Y. & Kim, J.-J. Highly efficient organic light-emitting diodes with phosphorescent emitters having high quantum yield and horizontal orientation of transition dipole moments. Adv. Mater. 26, 3844–3847 (2014).

    CAS  Google Scholar 

  44. 44.

    Uoyama, H., Goushi, K., Shizu, K., Nomura, H. & Adachi, C. Highly efficient organic light-emitting diodes from delayed fluorescence. Nature 492, 234–238 (2012).

    CAS  Google Scholar 

  45. 45.

    Baldo, M. A., Adachi, C. & Forrest, S. R. Transient analysis of organic electrophosphorescence. II. Transient analysis of triplet-triplet annihilation. Phys. Rev. B 62, 10967–10977 (2000).

    CAS  Google Scholar 

  46. 46.

    Matsushima, T. et al. High performance from extraordinarily thick organic light-emitting diodes. Nature 572, 502–506 (2019).

    CAS  Google Scholar 

  47. 47.

    Ràfols-Ribé, J. et al. High-performance organic light-emitting diodes comprising ultrastable glass layers. Sci. Adv. 4, eaar8332 (2018).

    Google Scholar 

  48. 48.

    Sentaurus Device User Manual in TCAD v. 2019.12 (Synopsys, 2019).

  49. 49.

    Darbandy, G. et al. Unraveling structure and device operation of organic permeable base transistors. Adv. Electron. Mater. 6, 2000230 (2020).

    CAS  Google Scholar 

  50. 50.

    Guo, E. et al. Vertical organic permeable dual-base transistors for logic circuits. Nat. Commun. 11, 4725 (2020).

    Google Scholar 

  51. 51.

    Will, P.-A. et al. Scattering quantified: evaluation of corrugation induced outcoupling concepts in organic light-emitting diodes. Org. Electron. 58, 250–256 (2018).

    CAS  Google Scholar 

  52. 52.

    Huang, Y.-H. et al. Unlocking the full potential of conducting polymers for high-efficiency organic light-emitting devices. Adv. Mater. 27, 929–934 (2015).

    CAS  Google Scholar 

  53. 53.

    Meerheim, R., Furno, M., Hofmann, S., Lüssem, B. & Leo, K. Quantification of energy loss mechanisms in organic light-emitting diodes. Appl. Phys. Lett. 97, 253305 (2010).

    Google Scholar 

  54. 54.

    Scholz, S., Kondakov, D., Lüssem, B. & Leo, K. Degradation mechanisms and reactions in organic light-emitting devices. Chem. Rev. 115, 8449–8503 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the funding by Deutsche Forschungsgemeinschaft (DFG) in the fflexcom SPP. Z.W. appreciates the funding from the Fundamental Research Funds for the Central Universities and the Alexander von Humboldt Foundation. Y.L. and E.G. acknowledge financial support from the China Scholarship Council (no. 201506920047 and 201706890003). We acknowledge the use of the HZDR Ion Beam Center transmission electron microscopy facilities and the funding of transmission electron microscope Talos by the German Federal Ministry of Education of Research (BMBF; grant no. 03SF0451) in the frame-work of HEMCP. We thank S. Lenk and S. Reineke at Technische Universität Dresden for fruitful discussions, A. Tahn at Dresden Center for Nanoanalysis (DCN) for assistance with the scanning electron microscopy measurement and P. Formánek at Leibniz-Institut für Polymerforschung Dresden e.V. (IPF) for the transmission electron microscopy measurement. Z.W. also appreciates the support from the Institute of Flexible Electronics and Northwestern Polytechnical University.

Author information

Affiliations

Authors

Contributions

Z.W., H.K. and K.L. supervised this project. Z.W., Y.L., H.K. and K.L. conceived the idea and designed the experiments. Z.W. and Y.L. carried out the calibration of the measurement equipment, device characterizations and the optical simulations. Y.L. conducted the optical measurement. E.G. was involved in the sample preparation and device characterizations (electrical characterization, scanning electron microscopy and atomic force microscopy) and contributed to the interpretation of the data. G.D. and A.K. made the TCAD simulation. R.H. performed the HAADF-STEM and energy-dispersive X-ray spectroscopy measurements. Z.W., Y.L., E.G., S.-J.W., H.K. and K.L. analysed the data and cowrote the manuscript. All authors commented on the manuscript.

Corresponding author

Correspondence to Zhongbin Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Michele Muccini, Andrew Rinzler and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Notes 1 and 2, Tables 1–4 and references.

Supplementary Video 1

The on/off switching function of OPB-LETs.

Supplementary Video 2

The luminance variation of OPB-LETs.

Source data

Source Data Fig. 3

EQE, luminance and current efficiency of red, green and blue OPB-LETs.

Source Data Fig. 5

Optical simulation of the green OPB-LETs.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wu, Z., Liu, Y., Guo, E. et al. Efficient and low-voltage vertical organic permeable base light-emitting transistors. Nat. Mater. 20, 1007–1014 (2021). https://doi.org/10.1038/s41563-021-00937-0

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing