Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order

Abstract

The discovery of intrinsic ferromagnetism in ultrathin two-dimensional van der Waals crystals opens up exciting prospects for exploring magnetism in the ultimate two-dimensional limit. Here, we show that environmentally stable CrSe2 nanosheets can be readily grown on a dangling-bond-free WSe2 substrate with systematically tunable thickness down to the monolayer limit. These CrSe2/WSe2 heterostructures display high-quality van der Waals interfaces with well-resolved moiré superlattices and ferromagnetic behaviour. We find no apparent change in surface roughness or magnetic properties after months of exposure in air. Our calculations suggest that charge transfer from the WSe2 substrate and interlayer coupling within CrSe2 play a critical role in the magnetic order in few-layer CrSe2 nanosheets. The highly controllable growth of environmentally stable CrSe2 nanosheets with tunable thickness defines a robust two-dimensional magnet for fundamental studies and potential applications in magnetoelectronic and spintronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thickness-tunable synthesis of CrSe2 nanosheets on WSe2 substrates.
Fig. 2: STEM characterization of CrSe2 nanosheets.
Fig. 3: Thickness-dependent magnetic properties.
Fig. 4: Magnetotransport measurements of the CrSe2 nanosheets with different thickness.
Fig. 5: Theoretical calculations of the magnetism in CrSe2.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author on reasonable request.

References

  1. Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    Article  CAS  Google Scholar 

  2. Liu, Y. et al. Van der Waals heterostructures and devices. Nat. Rev. Mater. 1, 16042 (2016).

    Article  CAS  Google Scholar 

  3. Duan, X., Wang, C., Pan, A., Yu, R. & Duan, X. Two-dimensional transition metal dichalcogenides as atomically thin semiconductors: opportunities and challenges. Chem. Soc. Rev. 44, 8859–8876 (2015).

    Article  CAS  Google Scholar 

  4. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    Article  CAS  Google Scholar 

  5. Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    Article  CAS  Google Scholar 

  6. Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    Article  CAS  Google Scholar 

  7. Jiang, S., Shan, J. & Mak, K. F. Electric-field switching of two-dimensional van der Waals magnets. Nat. Mater. 17, 406–410 (2018).

    Article  CAS  Google Scholar 

  8. Klein, D. R. et al. Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling. Science 360, 1218–1222 (2018).

    Article  CAS  Google Scholar 

  9. Kim, H. H. et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proc. Natl Acad. Sci. USA 116, 11131–11136 (2019).

    Article  CAS  Google Scholar 

  10. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    Article  CAS  Google Scholar 

  11. Wang, Z. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 13, 554–559 (2018).

    Article  CAS  Google Scholar 

  12. Sun, X. et al. Room temperature ferromagnetism in ultra-thin van der Waals crystals of 1T-CrTe2. Nano Res. 13, 3358–3363 (2020).

    Article  CAS  Google Scholar 

  13. O’Hara, D. J. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18, 3125–3131 (2018).

    Article  CAS  Google Scholar 

  14. Tan, C. et al. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 9, 1554 (2018).

    Article  CAS  Google Scholar 

  15. Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    Article  CAS  Google Scholar 

  16. Park, S. Y. et al. Controlling the magnetic anisotropy of the van der Waals ferromagnet Fe3GeTe2 through hole doping. Nano Lett. 20, 95–100 (2020).

    Article  CAS  Google Scholar 

  17. Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    Article  CAS  Google Scholar 

  18. Burch, K. S., Mandrus, D. & Park, J.-G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    Article  CAS  Google Scholar 

  19. Sethulakshmi, N. et al. Magnetism in two-dimensional materials beyond graphene. Mater. Today 27, 107–122 (2019).

    Article  CAS  Google Scholar 

  20. 2D magnetism gets hot. Nat. Nanotechnol. 13, 269–269 (2018).

  21. Mak, K. F., Shan, J. & Ralph, D. C. Probing and controlling magnetic states in 2D layered magnetic materials. Nat. Rev. Phys. 1, 646–661 (2019).

    Article  Google Scholar 

  22. Lee, J. et al. Structural and optical properties of single- and few-layer magnetic semiconductor CrPS4. ACS Nano 11, 10935–10944 (2017).

    Article  CAS  Google Scholar 

  23. Jiang, P. et al. Stacking tunable interlayer magnetism in bilayer CrI3. Phys. Rev. B 99, 144401 (2019).

    Article  CAS  Google Scholar 

  24. Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

    Article  CAS  Google Scholar 

  25. Chen, W. et al. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 366, 983 (2019).

    Article  CAS  Google Scholar 

  26. Chu, J. W. et al. Sub-millimeter-scale growth of one-unit-cell-thick ferrimagnetic Cr2S3 nanosheets. Nano Lett. 19, 2154–2161 (2019).

    Article  CAS  Google Scholar 

  27. Cui, F. F. et al. Controlled growth and thickness-dependent conduction-type transition of 2D ferrimagnetic Cr2S3 semiconductors. Adv. Mater. 32, 1905896 (2020).

    Article  CAS  Google Scholar 

  28. Zhou, S. S. et al. Ultrathin non-van der Waals magnetic rhombohedral Cr2S3: space-confined chemical vapor deposition synthesis and Raman scattering investigation. Adv. Funct. Mater. 29, 201805880 (2019).

    Google Scholar 

  29. Habib, M. R. et al. Electronic properties of polymorphic two-dimensional layered chromium disulphide. Nanoscale 11, 20123–20132 (2019).

    Article  CAS  Google Scholar 

  30. Shivayogimath, A. et al. A universal approach for the synthesis of two-dimensional binary compounds. Nat. Commun. 10, 2957 (2019).

    Article  Google Scholar 

  31. Zhang, Y. et al. Ultrathin magnetic 2D single-crystal CrSe. Adv. Mater. 31, 1900056 (2019).

    Article  CAS  Google Scholar 

  32. van Bruggen, C. F., Haange, R. J., Wiegers, G. A. & de Boer, D. K. G. CrSe2, a new layered dichalcogenide. Physica B+C 99, 166–172 (1980).

    Article  Google Scholar 

  33. Freitas, D. C. et al. Antiferromagnetism and ferromagnetism in layered 1T-CrSe2 with V and Ti replacements. Phys. Rev. B 87, 014420 (2013).

    Article  CAS  Google Scholar 

  34. Lebegue, S., Bjorkman, T., Klintenberg, M., Nieminen, R. M. & Eriksson, O. Two-dimensional materials from data filtering and ab initio calculations. Phys. Rev. X 3, 031002 (2013).

    CAS  Google Scholar 

  35. Sui, X. et al. Voltage-controllable colossal magnetocrystalline anisotropy in single-layer transition metal dichalcogenides. Phys. Rev. B 96, 041410 (2017).

    Article  Google Scholar 

  36. Fang, C. M., van Bruggen, C. F., de Groot, R. A., Wiegers, G. A. & Haas, C. The electronic structure of the metastable layer compound 1T-CrSe2. J. Phys. Condens. Matter 9, 10173–10184 (1997).

    Article  CAS  Google Scholar 

  37. Zhang, Z. et al. Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science 357, 788–792 (2017).

    Article  CAS  Google Scholar 

  38. Zhang, Z. et al. Ultrafast growth of large single crystals of monolayer WS2 and WSe2. Natl Sci. Rev. 7, 737–744 (2020).

    Article  CAS  Google Scholar 

  39. Ma, H. et al. Thickness-tunable synthesis of ultrathin type-II Dirac semimetal PtTe2 single crystals and their thickness-dependent electronic properties. Nano Lett. 18, 3523–3529 (2018).

    Article  CAS  Google Scholar 

  40. Zhao, B. et al. Synthetic control of two-dimensional NiTe2 single crystals with highly uniform thickness distributions. J. Am. Soc. Chem. 140, 14217–14223 (2018).

    Article  CAS  Google Scholar 

  41. Wu, R. et al. van der Waals epitaxial growth of atomically thin 2D metals on dangling-bond-free WSe2 and WS2. Adv. Funct. Mater. 29, 1806611 (2019).

    Article  CAS  Google Scholar 

  42. Arrott, A. Criterion for ferromagnetism from observations of magnetic isotherms. Phys. Rev. 108, 1394–1396 (1957).

    Article  CAS  Google Scholar 

  43. Wood, J. D. et al. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett. 14, 6964–6970 (2014).

    Article  CAS  Google Scholar 

  44. Kim, J.-S. et al. Toward air-stable multilayer phosphorene thin-films and transistors. Sci. Rep. 5, 8989 (2015).

    Article  CAS  Google Scholar 

  45. Zhao, Y. et al. Surface coordination of black phosphorus for robust air and water stability. Angew. Chem. Int. Ed. 55, 5003–5007 (2016).

    Article  CAS  Google Scholar 

  46. Lv, H. Y., Lu, W. J., Shao, D. F., Liu, Y. & Sun, Y. P. Strain-controlled switch between ferromagnetism and antiferromagnetism in 1T-CrX2 (X = Se, Te) monolayers. Phys. Rev. B 92, 214419 (2015).

    Article  CAS  Google Scholar 

  47. Ji, J. & Choi, J. H. Layer-number-dependent electronic and optoelectronic properties of 2D WSe2-organic hybrid heterojunction. Adv. Mater. Interfaces 6, 1900637 (2019).

    Article  CAS  Google Scholar 

  48. Wang, C. et al. Layer and doping tunable ferromagnetic order in two-dimensional CrS2 layers. Phys. Rev. B 97, 245409 (2018).

    Article  Google Scholar 

  49. Wang, C. et al. Bethe-Slater-curve-like behavior and interlayer spin-exchange coupling mechanisms in two-dimensional magnetic bilayers. Phys. Rev. B 102, 020402(R) (2020).

    Article  Google Scholar 

  50. Stöhr, J. & Siegmann, H. C. Magnetism: From Fundamentals to Nanoscale Dynamics (Springer, 2006).

  51. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  52. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  53. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  54. Kresse, G. & Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  55. Lee, K., Murray, É. D., Kong, L., Lundqvist, B. I. & Langreth, D. C. Higher-accuracy van der Waals density functional. Phys. Rev. B 82, 081101 (2010).

    Article  CAS  Google Scholar 

  56. Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).

    Article  CAS  Google Scholar 

  57. Klimeš, J., Bowler, D. R. & Michaelides, A. Van der Waals density functionals applied to solids. Phys. Rev. B 83, 195131 (2011).

    Article  CAS  Google Scholar 

  58. Hong, J. et al. Exploring atomic defects in molybdenum disulphide monolayers. Nat. Commun. 6, 6293 (2015).

    Article  CAS  Google Scholar 

  59. Qiao, J., Kong, X., Hu, Z.-X., Yang, F. & Ji, W. High-mobility transport anisotropy and linear dichroism in few-layer black phosphorus. Nat. Commun. 5, 4475 (2014).

    Article  CAS  Google Scholar 

  60. Qiao, J. et al. Few-layer tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties. Sci. Bull. 63, 159–168 (2018).

    Article  CAS  Google Scholar 

  61. Hu, Z.-X., Kong, X., Qiao, J., Normand, B. & Ji, W. Interlayer electronic hybridization leads to exceptional thickness-dependent vibrational properties in few-layer black phosphorus. Nanoscale 8, 2740–2750 (2016).

    Article  CAS  Google Scholar 

  62. Zhao, Y. et al. Extraordinarily strong interlayer interaction in 2D layered PtS2. Adv. Mater. 28, 2399–2407 (2016).

    Article  CAS  Google Scholar 

  63. Zhao, Y. et al. High-electron-mobility and air-stable 2D layered PtSe2 FETs. Adv. Mater. 29, 1604230 (2017).

    Article  CAS  Google Scholar 

  64. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  65. Cococcioni, M. & de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71, 035105 (2005).

    Article  CAS  Google Scholar 

  66. Xu, C., Feng, J., Xiang, H. & Bellaiche, L. Interplay between Kitaev interaction and single ion anisotropy in ferromagnetic CrI3 and CrGeTe3 monolayers. npj Comput. Mater. 4, 57 (2018).

    Article  CAS  Google Scholar 

  67. Chen, M. X., Chen, W., Zhang, Z. & Weinert, M. Effects of magnetic dopants in (Li0.8M0.2OH)FeSe (M = Fe, Mn, Co): density functional theory study using a band unfolding technique. Phys. Rev. B 96, 245111 (2017).

    Article  Google Scholar 

  68. Chen, M. & Weinert, M. Layer k-projection and unfolding electronic bands at interfaces. Phys. Rev. B 98, 245421 (2018).

    Article  CAS  Google Scholar 

  69. Duerloo, K.-A. N., Li, Y. & Reed, E. J. Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Xidong Duan acknowledges support by the National Key Research and Development Program of China (no. 2018YFA0703700), the National Natural Science Foundation of China (nos. 51991343, 51991340, 61804050 and 51872086), the Fundamental Research Funds of the Central Universities (no. 531107051078), the Double First-Class Initiative of Hunan University (no. 531109100004), and the Hunan Key Laboratory of Two-Dimensional Materials (no. 2018TP1010). W.J. acknowledges support by the National Key Research and Development Program of China (no. 2018YFE0202700), the National Natural Science Foundation of China (nos. 11622437, 61674171 and 11974422), and the Strategic Priority Research Program of the Chinese Academy of Sciences (no. XDB30000000). B.L. acknowledges support by the National Natural Science Foundation of China (no. 61804050), and the Fundamental Research Funds of the Central Universities (no. 531107051055). Calculations were performed at the Physics Lab of High-Performance Computing of Renmin University of China and the Shanghai Supercomputer Center. The work done at the University of Washington is mainly supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (DE-SC0018171).

Author information

Authors and Affiliations

Authors

Contributions

B.L. synthesized the samples. B.L., J.L., Z.Z., G.S., B.Z., H.M., R.W., Z. Wei, Y.L. and L.L. performed material characterizations. B.H., X.C., Y.Y. and X.X. contributed to RMCD measurements and analyses. Z. Wan, Q.Q., P.C. and B.L. fabricated and measured the Hall bar devices. C.W. and W.J. conducted theoretical calculations. B.L., Z. Wan, C.W., Y.H., W.J., Xidong Duan and Xiangfeng Duan wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Xidong Duan, Wei Ji or Xiangfeng Duan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Tables 1–4 and refs. 1–9.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Wan, Z., Wang, C. et al. Van der Waals epitaxial growth of air-stable CrSe2 nanosheets with thickness-tunable magnetic order. Nat. Mater. 20, 818–825 (2021). https://doi.org/10.1038/s41563-021-00927-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-00927-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing