Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Chirality-driven topological electronic structure of DNA-like materials

Abstract

Topological aspects of the geometry of DNA and similar chiral molecules have received a lot of attention, but the topology of their electronic structure is less explored. Previous experiments revealed that DNA can efficiently filter spin-polarized electrons between metal contacts, a process called chiral-induced spin selectivity. However, the underlying correlation between chiral structure and electronic spin remains elusive. In this work, we reveal an orbital texture in the band structure, a topological characteristic induced by the chirality. We found that this orbital texture enables the chiral molecule to polarize the quantum orbital. This orbital polarization effect (OPE) induces spin polarization assisted by the spin–orbit interaction of a metal contact and leads to magnetoresistance and chiral separation. The orbital angular momentum of photoelectrons also plays an essential role in related photoemission experiments. Beyond chiral-induced spin selectivity, we predict that the orbital polarization effect could induce spin-selective phenomena even in achiral but inversion-breaking materials.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Orbital polarization and orbital texture.
Fig. 2: Orbital polarization and spin polarization in the conductance.
Fig. 3: MR with magnetic leads.
Fig. 4: The orbital and spin polarization in an achiral system.

Data availability

All the data needed to evaluate the conclusions are present in the article and/or the Supplementary Information. Additional data related to this article may be requested from the authors.

References

  1. 1.

    Siegel, J. S. Homochiral imperative of molecular evolution. Chirality 10, 24–27 (1998).

    CAS  Google Scholar 

  2. 2.

    Weyl, H. Gravitation and the electron. Proc. Natl Acad. Sci. USA 15, 323 (1929).

    CAS  Google Scholar 

  3. 3.

    Gohler, B. et al. Spin selectivity in electron transmission through self-assembled monolayers of double-stranded DNA. Science 331, 894 – 897 (2011).

    Google Scholar 

  4. 4.

    Naaman, R. & Waldeck, D. H. Chiral-induced spin selectivity effect. J. Phys. Chem. Lett. 3, 2178–2187 (2012).

    CAS  Google Scholar 

  5. 5.

    Naaman, R., Paltiel, Y. & Waldeck, D. H. Chiral molecules and the electron spin. Nat. Rev. Chem. 3, 250–260 (2019).

    CAS  Google Scholar 

  6. 6.

    Banerjee-Ghosh, K. et al. Separation of enantiomers by their enantiospecific interaction with achiral magnetic substrates. Science 360, 1331–1334 (2018).

    CAS  Google Scholar 

  7. 7.

    Xie, Z. et al. Spin specific electron conduction through DNA oligomers. Nano Lett. 11, 4652–4655 (2011).

    CAS  Google Scholar 

  8. 8.

    Kettner, M. et al. Spin filtering in electron transport through chiral oligopeptides. J. Phys. Chem. C 119, 14542–14547 (2015).

    CAS  Google Scholar 

  9. 9.

    Ray, K., Ananthavel, S. P., Waldeck, D. H. & Naaman, R. Asymmetric scattering of polarized electrons by organized organic films of chiral molecules. Science 283, 814–816 (1999).

    CAS  Google Scholar 

  10. 10.

    Mishra, D. et al. Spin-dependent electron transmission through bacteriorhodopsin embedded in purple membrane. Proc. Natl Acad. Sci. USA 110, 14872–14876 (2013).

    CAS  Google Scholar 

  11. 11.

    Kettner, M. et al. Chirality-dependent electron spin filtering by molecular monolayers of helicenes. J. Phys. Chem. Lett. 9, 2025–2030 (2018).

    CAS  Google Scholar 

  12. 12.

    Guo, A.-M. & Sun, Q.-f Spin-selective transport of electrons in DNA double helix. Phys. Rev. Lett. 108, 218102 (2012).

    Google Scholar 

  13. 13.

    Gutierrez, R., Díaz, E., Naaman, R. & Cuniberti, G. Spin-selective transport through helical molecular systems. Phys. Rev. B 85, 081404 (2012).

    Google Scholar 

  14. 14.

    Matityahu, S., Utsumi, Y., Aharony, A., Entin-Wohlman, O. & Balseiro, C. A. Spin-dependent transport through a chiral molecule in the presence of spin–orbit interaction and nonunitary effects. Phys. Rev. B 93, 075407 (2016).

    Google Scholar 

  15. 15.

    Michaeli, K. & Naaman, R. Origin of spin-dependent tunneling through chiral molecules. J. Phys. Chem. C 123, 17043–17048 (2019).

    CAS  Google Scholar 

  16. 16.

    Dalum, S. & Hedegrd, P. Theory of chiral induced spin selectivity. Nano Lett. 19, 5253–5259 (2019).

    CAS  Google Scholar 

  17. 17.

    Yang, X., Wal, C. H. Vd & Wees, B. J. V. Spin-dependent electron transmission model for chiral molecules in mesoscopic devices. Phys. Rev. B 99, 024418 (2019).

    CAS  Google Scholar 

  18. 18.

    Geyer, M., Gutierrez, R. & Cuniberti, G. Effective Hamiltonian model for helically constrained quantum systems within adiabatic perturbation theory: application to the chirality-induced spin selectivity (CISS) effect. J. Chem. Phys. 152, 214105 (2020).

    CAS  Google Scholar 

  19. 19.

    Zoellner, M. S., Varela, S., Medina, E., Mujica, V. & Herrmann, C. Insight into the origin of chiral-induced spin selectivity from a symmetry analysis of electronic transmission. J. Chem. Theory Comput. 16, 2914–2929 (2020).

    CAS  Google Scholar 

  20. 20.

    Gersten, J., Kaasbjerg, K. & Nitzan, A. Induced spin filtering in electron transmission through chiral molecular layers adsorbed on metals with strong spin–orbit coupling. J. Chem. Phys. 139, 114111 (2013).

    Google Scholar 

  21. 21.

    Yan, B. & Felser, C. Topological materials: Weyl semimetals. Annu. Rev. Cond. Mat. Phys. 8, 337–354 (2017).

    Google Scholar 

  22. 22.

    Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    CAS  Google Scholar 

  23. 23.

    Tassinari, F. et al. Chirality dependent charge transfer rate in oligopeptides. Adv. Mater. 30, 1706423 (2018).

    Google Scholar 

  24. 24.

    Parameswaran, S. A., Turner, A. M., Arovas, D. P. & Vishwanath, A. Topological order and absence of band insulators at integer filling in non-symmorphic crystals. Nat. Phys. 9, 299–303 (2013).

    CAS  Google Scholar 

  25. 25.

    Büttiker, M. Four-terminal phase-coherent conductance. Phys. Rev. Lett. 57, 1761–1764 (1986).

    Google Scholar 

  26. 26.

    Büttiker, M. Role of quantum coherence in series resistors. Phys. Rev. B 33, 3020–3026 (1986).

    Google Scholar 

  27. 27.

    Zwang, T. J., Hürlimann, S., Hill, M. G. & Barton, J. K. Helix-dependent spin filtering through the DNA duplex. J. Am. Chem. Soc. 138, 15551–15554 (2016).

    CAS  Google Scholar 

  28. 28.

    Liu, T. et al. Linear and nonlinear two-terminal spin–valve effect from chirality-induced spin selectivity. ACS Nano 14, 15983–15991 (2020).

    Google Scholar 

  29. 29.

    Metzger, T. S. et al. The electron spin as a chiral reagent. Angew. Chem. Int. Ed. 59, 1653–1658 (2020).

    CAS  Google Scholar 

  30. 30.

    Santra, K., Zhang, Q., Tassinari, F. & Naaman, R. Electric-field-enhanced adsorption of chiral molecules on ferromagnetic substrates. J. Phys. Chem. B 123, 9443–9448 (2019).

    CAS  Google Scholar 

  31. 31.

    Ziv, A. et al. AFM-based spin-exchange microscopy using chiral molecules. Adv. Mater. 31, 1904206 (2019).

    CAS  Google Scholar 

  32. 32.

    Dianat, A. et al. The role of exchange interactions in the magnetic response and inter-molecular recognition of chiral molecules. Nano Lett. 20, 7077–7086 (2020).

    CAS  Google Scholar 

  33. 33.

    Yang, X., van der Wal, C. H. & van Wees, B. J. Detecting chirality in two-terminal electronic nanodevices. Nano Lett. 20, 6148–6154 (2020).

    CAS  Google Scholar 

  34. 34.

    Rikken, G. L. J. A., Flling, J. & Wyder, P. Electrical magnetochiral anisotropy. Phys. Rev. Lett. 87, 236602 (2001).

    CAS  Google Scholar 

  35. 35.

    Tokura, Y. & Nagaosa, N. Nonreciprocal responses from non-centrosymmetric quantum materials. Nat. Commun. 9, 3740 (2018).

    Google Scholar 

  36. 36.

    Zelezny, J., Zhang, Y., Felser, C. & Yan, B. Spin-polarized current in noncollinear antiferromagnets. Phys. Rev. Lett. 119, 187204 (2017).

    Google Scholar 

  37. 37.

    Bliokh, K. Y., Bliokh, Y. P., Savelaev, S. & Nori, F. Semiclassical dynamics of electron wave packet states with phase vortices. Phys. Rev. Lett. 99, 190404 (2007).

    Google Scholar 

  38. 38.

    Lloyd, S. M., Babiker, M., Thirunavukkarasu, G. & Yuan, J. Electron vortices: beams with orbital angular momentum. Rev. Mod. Phys. 89, 035004 (2017).

    Google Scholar 

  39. 39.

    Uchida, M. & Tonomura, A. Generation of electron beams carrying orbital angular momentum. Nature 464, 737–739 (2010).

    CAS  Google Scholar 

  40. 40.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996).

    CAS  Google Scholar 

  41. 41.

    Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    CAS  Google Scholar 

  42. 42.

    Slater, J. C. & Koster, G. F. Simplified LCAO method for the periodic potential problem. Phys. Rev. 94, 1498–1524 (1954).

    CAS  Google Scholar 

  43. 43.

    Groth, C. W., Wimmer, M., Akhmerov, A. R. & Waintal, X. Kwant: a software package for quantum transport. New J. Phys. 16, 063065 (2014).

    Google Scholar 

  44. 44.

    Bardarson, J. H. A proof of the Kramers degeneracy of transmission eigenvalues from antisymmetry of the scattering matrix. J. Phys. A 41, 405203 (2008).

    Google Scholar 

Download references

Acknowledgements

We thank A. Stern and Y. Oreg for advice, discussions and help. We also acknowledge inspiring discussions with R. Naaman, Y. Paltiel, Z. Wang, C. Yam, L. Muechler, T. Holder, R. Queiroz, K. Michaelia, L. Kronik, B.J. van Wees, X. Yang, S. Murakami, E. J. Mele and C. Felser. B.Y. honours the memory of S. Zhang who inspired him to investigate chirality in both physics and biology. B.Y. acknowledges financial support from the Willner Family Leadership Institute for the Weizmann Institute of Science, the Benoziyo Endowment Fund for the Advancement of Science, Ruth and Herman Albert Scholars Program for New Scientists and the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (Grant no. 815869).

Author information

Affiliations

Authors

Contributions

B.Y. conceived and supervised the project. Y.L. and J.X. performed the tight-binding and transport calculations. J.K. performed the density functional theory calculations. B.Y., Y.L. and J.X. wrote the manuscript. All the authors discussed and analysed results.

Corresponding author

Correspondence to Binghai Yan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Vladimiro Mujica, Hongming Weng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and Sections 1–5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Xiao, J., Koo, J. et al. Chirality-driven topological electronic structure of DNA-like materials. Nat. Mater. 20, 638–644 (2021). https://doi.org/10.1038/s41563-021-00924-5

Download citation

Further reading

  • Chiral spintronics

    • See-Hun Yang
    • , Ron Naaman
    • , Yossi Paltiel
    •  & Stuart S. P. Parkin

    Nature Reviews Physics (2021)

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing