Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures

Abstract

Ultrathin van der Waals materials and their heterostructures offer a simple, yet powerful platform for discovering emergent phenomena and implementing device structures in the two-dimensional limit. The past few years has pushed this frontier to include magnetism. These advances have brought forth a new assortment of layered materials that intrinsically possess a wide variety of magnetic properties and are instrumental in integrating exchange and spin–orbit interactions into van der Waals heterostructures. This Review Article summarizes recent progress in exploring the intrinsic magnetism of atomically thin van der Waals materials, manipulation of their magnetism by tuning the interlayer coupling, and device structures for spin- and valleytronic applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Magnetic properties of atomically thin chalcogen-based magnets.
Fig. 2: Structural and magnetic properties of layered chromium trihalides.
Fig. 3: Magnetic properties of atomically thin chromium trihalides.
Fig. 4: Stacking order and super-superexchange interactions in CrX3.
Fig. 5: Pressure control of magnetic states in few-layer CrI3.
Fig. 6: Magnetic proximity effects in vdW heterostructures.

References

  1. 1.

    Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

    CAS  Google Scholar 

  2. 2.

    Mak, K. F., Lee, C., Hone, J., Shan, J. & Heinz, T. F. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010).

    Google Scholar 

  3. 3.

    Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    CAS  Google Scholar 

  4. 4.

    Novoselov, K. S., Mishchenko, A., Carvalho, A. & Castro Neto, A. H. 2D materials and van der Waals heterostructures. Science 353, aac9439 (2016).

    CAS  Google Scholar 

  5. 5.

    Baugher, B. W. H., Churchill, H. O. H., Yang, Y. & Jarillo-Herrero, P. Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. Nat. Nanotechnol. 9, 262–267 (2014).

    CAS  Google Scholar 

  6. 6.

    Ross, J. S. et al. Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. Nat. Nanotechnol. 9, 268–272 (2014).

    CAS  Google Scholar 

  7. 7.

    Cheng, R. et al. Electroluminescence and photocurrent generation from atomically sharp WSe2/MoS2 heterojunction p-n diodes. Nano Lett. 14, 5590–5597 (2014).

    CAS  Google Scholar 

  8. 8.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  Google Scholar 

  9. 9.

    Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    CAS  Google Scholar 

  10. 10.

    Jin, C. et al. Observation of moiré excitons in WSe2/WS2 heterostructure superlattices. Nature 567, 76–80 (2019).

    CAS  Google Scholar 

  11. 11.

    Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    CAS  Google Scholar 

  12. 12.

    Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    CAS  Google Scholar 

  13. 13.

    Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals Crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    CAS  Google Scholar 

  14. 14.

    Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    CAS  Google Scholar 

  15. 15.

    De Jongh, L. J. Experiments on simple magnetic model systems. J. Appl. Phys. 49, 1305–1310 (1978).

    Google Scholar 

  16. 16.

    Lines, M. E. Magnetism in two dimensions. J. Appl. Phys. 40, 1352–1358 (1969).

    Google Scholar 

  17. 17.

    Cortie, D. L. et al. Two-dimensional magnets: forgotten history and recent progress towards spintronic applications. Adv. Funct. Mater. 2019, 1901414 (2019).

    Google Scholar 

  18. 18.

    Vaz, C. A. F., Bland, J. A. C. & Lauhoff, G. Magnetism in ultrathin film structures. Reports Prog. Phys. 71, 056501 (2008).

    Google Scholar 

  19. 19.

    Bhattacharya, A. & May, S. J. Magnetic oxide heterostructures. Annu. Rev. Mater. Res. 44, 65–90 (2014).

    CAS  Google Scholar 

  20. 20.

    Scalapino, D. J. A common thread: the pairing interaction for unconventional superconductors. Rev. Mod. Phys. 84, 1383–1417 (2012).

    CAS  Google Scholar 

  21. 21.

    Dai, P. Antiferromagnetic order and spin dynamics in iron-based superconductors. Rev. Mod. Phys. 87, 855–896 (2015).

    CAS  Google Scholar 

  22. 22.

    Savary, L. & Balents, L. Quantum spin liquids: a review. Reports Prog. Phys. 80, 016502 (2017).

    Google Scholar 

  23. 23.

    Burch, K. S., Mandrus, D. & Park, J. G. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).

    CAS  Google Scholar 

  24. 24.

    Gibertini, M., Koperski, M., Morpurgo, A. F. & Novoselov, K. S. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408–419 (2019).

    CAS  Google Scholar 

  25. 25.

    Gong, C. & Zhang, X. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, eaav4450 (2019).

    CAS  Google Scholar 

  26. 26.

    Song, T. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 18, 1298–1302 (2019).

    CAS  Google Scholar 

  27. 27.

    Li, T. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 18, 1303–1308 (2019).

    CAS  Google Scholar 

  28. 28.

    Sivadas, N., Daniels, M. W., Swendsen, R. H., Okamoto, S. & Xiao, D. Magnetic ground state of semiconducting transition-metal trichalcogenide monolayers. Phys. Rev. B 91, 235425 (2015).

    Google Scholar 

  29. 29.

    Cai, X. et al. Atomically thin CrCl3: an in-plane layered antiferromagnetic insulator. Nano Lett. 19, 3993–3998 (2019).

    CAS  Google Scholar 

  30. 30.

    Kim, H. H. et al. Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides. Proc. Natl Acad. Sci. USA 116, 11131–11136 (2019).

    CAS  Google Scholar 

  31. 31.

    Klein, D. R. et al. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet. Nat. Phys. 15, 1255–1260 (2019).

    CAS  Google Scholar 

  32. 32.

    Norden, T. et al. Giant valley splitting in monolayer WS2 by magnetic proximity effect. Nat. Commun. 10, 4163 (2019).

    Google Scholar 

  33. 33.

    Kim, M. et al. Hall micromagnetometry of individual two-dimensional ferromagnets. Nat. Electron. 2, 457–463 (2019).

    CAS  Google Scholar 

  34. 34.

    Alghamdi, M. et al. Highly efficient spin-orbit torque and switching of layered ferromagnet Fe3GeTe2. Nano Lett. 19, 4400–4405 (2019).

    CAS  Google Scholar 

  35. 35.

    Ostwal, V., Shen, T. & Appenzeller, J. Efficient spin-orbit torque switching of the semiconducting van der Waals ferromagnet Cr2Ge2Te6. Adv. Mater. 32, 1906021 (2020).

    CAS  Google Scholar 

  36. 36.

    Zhong, D. et al. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).

    Google Scholar 

  37. 37.

    Seyler, K. L. et al. Valley manipulation by optically tuning the magnetic proximity effect in WSe2/CrI3 heterostructures. Nano Lett. 18, 3823–3828 (2018).

    CAS  Google Scholar 

  38. 38.

    Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019).

    CAS  Google Scholar 

  39. 39.

    Liu, C. et al. Quantum phase transition from axion insulator to Chern insulator in MnBi2Te4. Nat. Mater. 19, 522–527 (2020).

    CAS  Google Scholar 

  40. 40.

    Brec, R. Review on structural and chemical properties of transition metal phosphorous trisulfides MPS3. Solid State Ion. 22, 3–30 (1986).

    CAS  Google Scholar 

  41. 41.

    Kim, K. et al. Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3. Nat. Commun. 10, 345 (2019).

    Google Scholar 

  42. 42.

    Kim, K. et al. Antiferromagnetic ordering in van der Waals 2D magnetic material MnPS3 probed by Raman spectroscopy. 2D Mater. 6, 041001 (2019).

    CAS  Google Scholar 

  43. 43.

    Sun, Y. J., Tan, Q. H., Liu, X. L., Gao, Y. F. & Zhang, J. Probing the magnetic ordering of antiferromagnetic MnPS3 by Raman spectroscopy. J. Phys. Chem. Lett. 10, 3087–3093 (2019).

    CAS  Google Scholar 

  44. 44.

    Susner, M. A., Chyasnavichyus, M., McGuire, M. A., Ganesh, P. & Maksymovych, P. Metal thio- and selenophosphates as multifunctional van der Waals layered materials. Adv. Mater. 29, 1602852 (2017).

    Google Scholar 

  45. 45.

    Jernberg, P., Bjarman, S. & Wäppling, R. FePS3: a first-order phase transition in a ‘2D’ Ising antiferromagnet. J. Magn. Magn. Mater. 46, 178–190 (1984).

    CAS  Google Scholar 

  46. 46.

    Rule, K. C., McIntyre, G. J., Kennedy, S. J. & Hicks, T. J. Single-crystal and powder neutron diffraction experiments on FePS3: search for the magnetic structure. Phys. Rev. B 76, 134402 (2007).

    Google Scholar 

  47. 47.

    Wildes, A. R. et al. Magnetic structure of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 92, 224408 (2015).

    Google Scholar 

  48. 48.

    Joy, P. A. & Vasudevan, S. Magnetism in the layered transition-metal thiophosphates MPS3 (M=Mn, Fe, and Ni). Phys. Rev. B 46, 5425–5433 (1992).

    CAS  Google Scholar 

  49. 49.

    Lançon, D., Ewings, R. A., Guidi, T., Formisano, F. & Wildes, A. R. Magnetic exchange parameters and anisotropy of the quasi-two-dimensional antiferromagnet NiPS3. Phys. Rev. B 98, 134414 (2018).

    Google Scholar 

  50. 50.

    Lee, J. U. et al. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).

    CAS  Google Scholar 

  51. 51.

    McCreary, A. et al. Quasi-two-dimensional magnon identification in antiferromagnetic FePS3 via magneto-Raman spectroscopy. Phys. Rev. B 101, 064416 (2020).

    CAS  Google Scholar 

  52. 52.

    Bonilla, M. et al. Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates. Nat. Nanotechnol. 13, 289–293 (2018).

    CAS  Google Scholar 

  53. 53.

    O’Hara, D. J. et al. Room temperature intrinsic ferromagnetism in epitaxial manganese selenide films in the monolayer limit. Nano Lett. 18, 3125–3131 (2018).

    Google Scholar 

  54. 54.

    May, A. F. et al. Ferromagnetism near room temperature in the cleavable van der Waals crystal Fe5GeTe2. ACS Nano 13, 4436–4442 (2019).

    CAS  Google Scholar 

  55. 55.

    Yan, J. Q. et al. Crystal growth and magnetic structure of MnBi2Te4. Phys. Rev. Mater. 3, 064202 (2019).

    CAS  Google Scholar 

  56. 56.

    Chen, B. et al. Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes. Nat. Commun. 10, 4469 (2019).

    Google Scholar 

  57. 57.

    Wu, J. et al. Natural van der Waals heterostructures with tunable magnetic and topological states. Sci. Adv. 5, eaax9989 (2019).

    CAS  Google Scholar 

  58. 58.

    Otrokov, M. M. et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett. 122, 107202 (2019).

    CAS  Google Scholar 

  59. 59.

    Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    CAS  Google Scholar 

  60. 60.

    Ge, J. et al. High-chern-number and high-temperature quantum hall effect without landau levels. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwaa089 (2020).

  61. 61.

    Carteaux, V., Brunet, D., Ouvrard, G. & Andre, G. Crystallographic, magnetic and electronic structures of a new layered ferromagnetic compound Cr2Ge2Te6. J. Phys. Condens. Matter 7, 69–87 (1995).

    CAS  Google Scholar 

  62. 62.

    Tian, Y., Gray, M. J., Ji, H., Cava, R. J. & Burch, K. S. Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal. 2D Mater. 3, 025035 (2016).

    Google Scholar 

  63. 63.

    Wang, Z. et al. Electric-field control of magnetism in a few-layered van der Waals ferromagnetic semiconductor. Nat. Nanotechnol. 13, 554–559 (2018).

    CAS  Google Scholar 

  64. 64.

    Chen, B. et al. Magnetic properties of layered itinerant electron ferromagnet Fe3GeTe2. J. Phys. Soc. Japan 82, 124711 (2013).

    Google Scholar 

  65. 65.

    Yi, J. et al. Competing antiferromagnetism in a quasi-2D itinerant ferromagnet: Fe3GeTe2. 2D Mater. 4, 011005 (2016).

    Google Scholar 

  66. 66.

    Deiseroth, H. J., Aleksandrov, K., Reiner, C., Kienle, L. & Kremer, R. K. Fe3GeTe2 and Ni3GeTe2 - two new layered transition-metal compounds: Crystal structures, HRTEM investigations, and magnetic and electrical properties. Eur. J. Inorg. Chem. 2006, 1561–1567 (2006).

    Google Scholar 

  67. 67.

    Tan, C. et al. Hard magnetic properties in nanoflake van der Waals Fe3GeTe2. Nat. Commun. 9, 1554 (2018).

    Google Scholar 

  68. 68.

    May, A. F., Calder, S., Cantoni, C., Cao, H. & McGuire, M. A. Magnetic structure and phase stability of the van der Waals bonded ferromagnet Fe3-xGeTe2. Phys. Rev. B 93, 014411 (2016).

    Google Scholar 

  69. 69.

    Desai, S. B. et al. Gold-mediated exfoliation of ultralarge optoelectronically-perfect monolayers. Adv. Mater. 28, 4053–4058 (2016).

    CAS  Google Scholar 

  70. 70.

    Velický, M. et al. Mechanism of gold-assisted exfoliation of centimeter-sized transition-metal dichalcogenide monolayers. ACS Nano 12, 10463–10472 (2018).

    Google Scholar 

  71. 71.

    Magda, G. Z. et al. Exfoliation of large-area transition metal chalcogenide single layers. Sci. Rep. 5, 14714 (2015).

    CAS  Google Scholar 

  72. 72.

    Deng, Y. et al. Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2. Nature 563, 94–99 (2018).

    CAS  Google Scholar 

  73. 73.

    Fei, Z. et al. Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2. Nat. Mater. 17, 778–782 (2018).

    CAS  Google Scholar 

  74. 74.

    Liu, S. et al. Wafer-scale two-dimensional ferromagnetic Fe3GeTe2 thin films were grown by molecular beam epitaxy. npj 2D Mater. Appl. 1, 30 (2017).

    Google Scholar 

  75. 75.

    Weber, D., Trout, A. H., McComb, D. W. & Goldberger, J. E. Decomposition-induced room-temperature magnetism of the Na-intercalated layered ferromagnet Fe3-xGeTe2. Nano Lett. 19, 5031–5035 (2019).

    CAS  Google Scholar 

  76. 76.

    van Bruggen, C. F. & Haas, C. Magnetic susceptibility and electrical properties of VSe2 single crystals. Solid State Commun. 20, 251–254 (1976).

    Google Scholar 

  77. 77.

    Bayard, M. & Sienko, M. J. Anomalous electrical and magnetic properties of vanadium diselenide. J. Solid State Chem. 19, 325–329 (1976).

    CAS  Google Scholar 

  78. 78.

    Onari, S. & Arai, T. Infrared lattice vibrations and dielectric dispersion in antiferromagnetic semiconductor MnSe2. J. Phys. Soc. Japan 46, 184–188 (1979).

    CAS  Google Scholar 

  79. 79.

    Pollard, R. J., McCann, V. H. & Ward, J. B. Magnetic structures of α-MnS and MnSe from 57Fe Mossbauer spectroscopy. J. Phys. C Solid State Phys. 16, 345–353 (1983).

    CAS  Google Scholar 

  80. 80.

    Duvjir, G. et al. Emergence of a metal-insulator transition and high-temperature charge-density waves in VSe2 at the monolayer limit. Nano Lett. 18, 5432–5438 (2018).

    CAS  Google Scholar 

  81. 81.

    Ma, Y. et al. Evidence of the existence of magnetism in pristine VX2 monolayers (X = S, Se) and their strain-induced tunable magnetic properties. ACS Nano 6, 1695–1701 (2012).

    CAS  Google Scholar 

  82. 82.

    Kan, M., Adhikari, S. & Sun, Q. Ferromagnetism in MnX2 (X = S, Se) monolayers. Phys. Chem. Chem. Phys. 16, 4990–4994 (2014).

    CAS  Google Scholar 

  83. 83.

    Fumega, A. O. et al. Absence of ferromagnetism in VSe2 caused by its charge density wave phase. J. Phys. Chem. C 123, 27802–27810 (2019).

    CAS  Google Scholar 

  84. 84.

    Coelho, P. et al. Charge density wave state suppresses ferromagnetic ordering in VSe2 monolayers. J. Phys. Chem. C 123, 14089–14096 (2019).

    CAS  Google Scholar 

  85. 85.

    Lado, J. L. & Fernández-Rossier, J. On the origin of magnetic anisotropy in two dimensional CrI3. 2D Mater. 4, 035002 (2017).

    Google Scholar 

  86. 86.

    Wong, P. K. J. et al. Evidence of spin frustration in a vanadium diselenide monolayer magnet. Adv. Mater. 31, 1901185 (2019).

    Google Scholar 

  87. 87.

    Feng, J. et al. Electronic structure and enhanced charge-density wave order of monolayer VSe2. Nano Lett. 18, 4493–4499 (2018).

    CAS  Google Scholar 

  88. 88.

    Kong, T. et al. VI3 - a new layered ferromagnetic semiconductor. Adv. Mater. 31, 1808074 (2019).

    Google Scholar 

  89. 89.

    Tian, S. et al. Ferromagnetic van der Waals Crystal VI3. J. Am. Chem. Soc. 141, 5326–5333 (2019).

    CAS  Google Scholar 

  90. 90.

    Son, S. et al. Bulk properties of the van der Waals hard ferromagnet VI3. Phys. Rev. B 99, 041402 (2019).

    CAS  Google Scholar 

  91. 91.

    Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    CAS  Google Scholar 

  92. 92.

    Zhang, W. B., Qu, Q., Zhu, P. & Lam, C. H. Robust intrinsic ferromagnetism and half semiconductivity in stable two-dimensional single-layer chromium trihalides. J. Mater. Chem. C 3, 12457–12468 (2015).

    CAS  Google Scholar 

  93. 93.

    McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015).

    CAS  Google Scholar 

  94. 94.

    Morosin, B. & Narath, A. X-ray diffraction and nuclear quadrupole resonance studies of chromium trichloride. J. Chem. Phys. 40, 1958–1967 (1964).

    CAS  Google Scholar 

  95. 95.

    McGuire, M. A. et al. Magnetic behavior and spin-lattice coupling in cleavable van der Waals layered CrCl3 crystals. Phys. Rev. Mater. 1, 014001 (2017).

    Google Scholar 

  96. 96.

    Wang, H., Fan, F., Zhu, S. & Wu, H. Doping enhanced ferromagnetism and induced half-metallicity in CrI3 monolayer. Europhys. Lett. 114, 47001 (2016).

    Google Scholar 

  97. 97.

    Kanamori, J. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10, 87–98 (1959).

    CAS  Google Scholar 

  98. 98.

    Hansen, W. N. Some magnetic properties of the chromium (III) halides at 4.2°K. J. Appl. Phys. 30, 304S–305S (1959).

    CAS  Google Scholar 

  99. 99.

    Tsubokawa, I. On the magnetic properties of a CrBr3 single crystal. J. Phys. Soc. Japan 15, 1664–1668 (1960).

    CAS  Google Scholar 

  100. 100.

    Narath, A. Low-temperature sublattice magnetization of antiferromagnetic CrCl3. Phys. Rev. 131, 1929–1942 (1963).

    Google Scholar 

  101. 101.

    Narath, A. & Davis, H. L. Spin-wave analysis of the sublattice magnetization behavior of antiferromagnetic and ferromagnetic CrCl3. Phys. Rev. 137, A163–A178 (1965).

    Google Scholar 

  102. 102.

    Kuhlow, B. Magnetic ordering in CrCl3 at the phase transition. Phys. Status Solidi 72, 161–168 (1982).

    CAS  Google Scholar 

  103. 103.

    Bené, R. W. Electron-paramagnetic-resonance study of Cr ions and exchange-coupled Cr ion pairs in the BiI3 structure. Phys. Rev. 178, 497–513 (1969).

    Google Scholar 

  104. 104.

    Abramchuk, M. et al. Controlling magnetic and optical properties of the van der Waals crystal CrCl3−xBrx via mixed halide chemistry. Adv. Mater. 30, 1801325 (2018).

    Google Scholar 

  105. 105.

    Wu, M., Li, Z., Cao, T. & Louie, S. G. Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators. Nat. Commun. 10, 2371 (2019).

    Google Scholar 

  106. 106.

    Song, T. et al. Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures. Science 360, 1214–1218 (2018).

    CAS  Google Scholar 

  107. 107.

    Hellwig, O., Berger, A., Kortright, J. B. & Fullerton, E. E. Domain structure and magnetization reversal of antiferromagnetically coupled perpendicular anisotropy films. J. Magn. Magn. Mater. 319, 13–55 (2007).

    CAS  Google Scholar 

  108. 108.

    Chen, B. et al. All-oxide-based synthetic antiferromagnets exhibiting layer-resolved magnetization reversal. Science 357, 191–194 (2017).

    CAS  Google Scholar 

  109. 109.

    Thiel, L. et al. Probing magnetism in 2D materials at the nanoscale with single spin microscopy. Science 364, 973–976 (2019).

    CAS  Google Scholar 

  110. 110.

    Sun, Z. et al. Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3. Nature 572, 497–501 (2019).

    CAS  Google Scholar 

  111. 111.

    Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018).

    CAS  Google Scholar 

  112. 112.

    Zhang, Z. et al. Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett. 19, 3138–3142 (2019).

    CAS  Google Scholar 

  113. 113.

    Jagla, E. A. Hysteresis loops of magnetic thin films with perpendicular anisotropy. Phys. Rev. B 72, 094406 (2005).

    Google Scholar 

  114. 114.

    Jiang, P. et al. Stacking tunable interlayer magnetism in bilayer CrI3. Phys. Rev. B 99, 144401 (2019).

    CAS  Google Scholar 

  115. 115.

    Goodenough, J. B. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys. Rev. 100, 564–573 (1955).

    CAS  Google Scholar 

  116. 116.

    Ubrig, N. et al. Low-temperature monoclinic layer stacking in atomically thin CrI3 crystals. 2D Mater. 7, 015007 (2020).

    Google Scholar 

  117. 117.

    Sivadas, N., Okamoto, S., Xu, X., Fennie, C. J. & Xiao, D. Stacking-dependent magnetism in bilayer CrI3. Nano Lett. 18, 7658–7664 (2018).

    CAS  Google Scholar 

  118. 118.

    MacNeill, D. et al. Gigahertz frequency antiferromagnetic resonance and strong magnon-magnon coupling in the layered crystal CrCl3. Phys. Rev. Lett. 123, 047204 (2019).

    CAS  Google Scholar 

  119. 119.

    Chen, W. et al. Direct observation of van der Waals stacking-dependent interlayer magnetism. Science 366, 983–987 (2019).

    CAS  Google Scholar 

  120. 120.

    Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    CAS  Google Scholar 

  121. 121.

    Cai, T. et al. Magnetic control of the valley degree of freedom of massive Dirac fermions with application to transition metal dichalcogenides. Phys. Rev. B 88, 115140 (2013).

    Google Scholar 

  122. 122.

    Stier, A. V. et al. Magnetooptics of exciton rydberg states in a monolayer semiconductor. Phys. Rev. Lett. 120, 057406 (2018).

    Google Scholar 

  123. 123.

    Aivazian, G. et al. Magnetic control of valley pseudospin in monolayer WSe2. Nat. Phys. 11, 148–152 (2015).

    CAS  Google Scholar 

  124. 124.

    Huang, S. Y. et al. Transport magnetic proximity effects in platinum. Phys. Rev. Lett. 109, 107204 (2012).

    CAS  Google Scholar 

  125. 125.

    Hellman, F. et al. Interface-induced phenomena in magnetism. Rev. Mod. Phys. 89, 025006 (2017).

    Google Scholar 

  126. 126.

    Lohmann, M. et al. Probing magnetism in insulating Cr2Ge2Te6 by induced anomalous hall effect in Pt. Nano Lett. 19, 2397–2403 (2019).

    CAS  Google Scholar 

  127. 127.

    Wang, X. et al. Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2. Sci. Adv. 5, eaaw8904 (2019).

    CAS  Google Scholar 

  128. 128.

    Yu, X. et al. Large magnetocaloric effect in van der Waals crystal CrBr3. Front. Phys. 14, 6–10 (2019).

    Google Scholar 

  129. 129.

    Tong, Q., Liu, F., Xiao, J. & Yao, W. Skyrmions in the moiré of van der Waals 2D magnets. Nano Lett. 18, 7194–7199 (2018).

    CAS  Google Scholar 

  130. 130.

    Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    CAS  Google Scholar 

  131. 131.

    Wu, Z., Yu, J. & Yuan, S. Strain-tunable magnetic and electronic properties of monolayer CrI3. Phys. Chem. Chem. Phys. 21, 7750–7755 (2019).

    CAS  Google Scholar 

  132. 132.

    Shcherbakov, D. et al. Raman spectroscopy, photocatalytic degradation, and stabilization of atomically thin chromium tri-iodide. Nano Lett. 18, 4214–4219 (2018).

    CAS  Google Scholar 

  133. 133.

    Huang, B. et al. Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3. Nat. Nanotechnol. 15, 212–216 (2020).

    CAS  Google Scholar 

  134. 134.

    Wiesendanger, R. Spin mapping at the nanoscale and atomic scale. Rev. Mod. Phys. 81, 1495–1550 (2009).

    CAS  Google Scholar 

  135. 135.

    Schirhagl, R., Chang, K., Loretz, M. & Degen, C. L. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65, 83–105 (2014).

    CAS  Google Scholar 

  136. 136.

    Degen, C. L. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92, 243111 (2008).

    Google Scholar 

  137. 137.

    Casola, F., Van Der Sar, T. & Yacoby, A. Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond. Nat. Rev. Mater. 3, 17088 (2018).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge D. Klein, Q. Zhang and D. Ovchinnikov for constructive feedback. The work at the University of Washington is mainly supported by the Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division (DE-SC0018171 and DE-SC0012509). M.A.M. and A.M. were supported by the US Department of Energy, Office of Science, Basic Energy Sciences, Materials Sciences and Engineering Division. Work at MIT was mainly supported by the DOE Office of Science, Basic Energy Sciences under award DE-SC0018935, the Center for Integrated Quantum Materials under NSF grant DMR-1231319, as well as the Gordon and Betty Moore Foundation’s EPiQS Initiative through grant GBMF4541 to P.J.H. D.X., P.J.H. and X.X. acknowledge partial support from Air Force Office of Scientific Research (AFOSR) 2D MAGIC MURI FA9550-19-1-0390.

Author information

Affiliations

Authors

Contributions

The experimental and theoretical work reviewed here has been performed largely by the co-authors and their groups. B.H. and X.X. led the writing of this manuscript, with input from all co-authors.

Corresponding authors

Correspondence to Bevin Huang or Xiaodong Xu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Huang, B., McGuire, M.A., May, A.F. et al. Emergent phenomena and proximity effects in two-dimensional magnets and heterostructures. Nat. Mater. (2020). https://doi.org/10.1038/s41563-020-0791-8

Download citation

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing