Metal halide perovskites for light-emitting diodes


Metal halide perovskites have shown promising optoelectronic properties suitable for light-emitting applications. The development of perovskite light-emitting diodes (PeLEDs) has progressed rapidly over the past several years, reaching high external quantum efficiencies of over 20%. In this Review, we focus on the key requirements for high-performance PeLEDs, highlight recent advances on materials and devices, and emphasize the importance of reliable characterization of PeLEDs. We discuss possible approaches to improve the performance of blue and red PeLEDs, increase the long-term operational stability and reduce toxicity hazards. We also provide an overview of the application space made possible by recent developments in high-efficiency PeLEDs.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Charge-carrier recombination kinetics.
Fig. 2: Defects in perovskites and defect passivation.
Fig. 3: Device aspects of PeLEDs.
Fig. 4: Challenges in high-performance blue and red PeLEDs.
Fig. 5: Prospects for perovskites in white PeLEDs and electrically pumped lasers.


  1. 1.

    Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

    CAS  Google Scholar 

  2. 2.

    Quan, L. N. et al. Perovskites for next-generation optical sources. Chem. Rev. 119, 7444–7477 (2019).

    CAS  Google Scholar 

  3. 3.

    Era, M., Morimoto, S., Tsutsui, T. & Saito, S. Organic–inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4. Appl. Phys. Lett. 65, 676–678 (1998).

    Google Scholar 

  4. 4.

    Chondroudis, K. & Mitzi, D. B. Electroluminescence from an organic−inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chem. Mater. 11, 3028–3030 (1999).

    CAS  Google Scholar 

  5. 5.

    Tan, Z.-K. et al. Bright light-emitting diodes based on organometal halide perovskite. Nat. Nanotechnol. 9, 687–692 (2014).

    CAS  Google Scholar 

  6. 6.

    Xu, W. et al. Rational molecular passivation for high-performance perovskite light-emitting diodes. Nat. Photon. 13, 418–424 (2019).

    CAS  Google Scholar 

  7. 7.

    Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    CAS  Google Scholar 

  8. 8.

    Cao, Y. et al. Perovskite light-emitting diodes based on spontaneously formed submicrometre-scale structures. Nature 562, 249–253 (2018).

    CAS  Google Scholar 

  9. 9.

    Chiba, T. et al. Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices. Nat. Photon. 12, 681–687 (2018).

    CAS  Google Scholar 

  10. 10.

    Zhao, B. et al. High-efficiency perovskite–polymer bulk heterostructure light-emitting diodes. Nat. Photon. 12, 783–789 (2018).

    CAS  Google Scholar 

  11. 11.

    Bao, C. et al. Bidirectional optical signal transmission between two identical devices using perovskite diodes. Nat. Electron. 3, 156–164 (2020).

    Google Scholar 

  12. 12.

    Luo, J. et al. Efficient and stable emission of warm-white light from lead-free halide double perovskites. Nature 563, 541–545 (2018).

    CAS  Google Scholar 

  13. 13.

    Shamsi, J., Urban, A. S., Imran, M., De Trizio, L. & Manna, L. Metal halide perovskite nanocrystals: synthesis, post-synthesis modifications, and their optical properties. Chem. Rev. 119, 3296–3348 (2019).

    CAS  Google Scholar 

  14. 14.

    Huang, H., Bodnarchuk, M. I., Kershaw, S. V., Kovalenko, M. V. & Rogach, A. L. Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Lett. 2, 2071–2083 (2017).

    CAS  Google Scholar 

  15. 15.

    Protesescu, L. et al. Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut. Nano Lett. 15, 3692–3696 (2015).

    CAS  Google Scholar 

  16. 16.

    Yu, D., Cao, F., Gao, Y., Xiong, Y. & Zeng, H. Room-temperature ion-exchange-mediated self-assembly toward formamidinium perovskite nanoplates with finely tunable, ultrapure green emissions for achieving Rec. 2020 displays. Adv. Funct. Mater. 28, 1800248 (2018).

    Google Scholar 

  17. 17.

    Xing, G. et al. Transcending the slow bimolecular recombination in lead-halide perovskites for electroluminescence. Nat. Commun. 8, 14558 (2017).

    CAS  Google Scholar 

  18. 18.

    Herz, L. M. Charge-carrier dynamics in organic–inorganic metal halide perovskites. Annu. Rev. Phys. Chem. 67, 65–89 (2016).

    CAS  Google Scholar 

  19. 19.

    Manser, J. S. & Kamat, P. V. Band filling with free charge carriers in organometal halide perovskites. Nat. Photon. 8, 737–743 (2014).

    CAS  Google Scholar 

  20. 20.

    Cho, H. et al. Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350, 1222–1225 (2015).

    CAS  Google Scholar 

  21. 21.

    Xiao, Z. et al. Efficient perovskite light-emitting diodes featuring nanometre-sized crystallites. Nat. Photon. 11, 108–115 (2017).

    CAS  Google Scholar 

  22. 22.

    Li, G. et al. Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 15, 2640–2644 (2015).

    CAS  Google Scholar 

  23. 23.

    Feldmann, S. et al. Photodoping through local charge carrier accumulation in alloyed hybrid perovskites for highly efficient luminescence. Nat. Photon. 14, 123–128 (2020).

    CAS  Google Scholar 

  24. 24.

    Wei, Q. et al. Recent progress in metal halide perovskite micro- and nanolasers. Adv. Opt. Mater. 7, 1900080 (2019).

    Google Scholar 

  25. 25.

    Dutta, A., Behera, R. K., Pal, P., Baitalik, S. & Pradhan, N. Near-unity photoluminescence quantum efficiency for all CsPbX3 (X = Cl, Br, and I) perovskite nanocrystals: a generic synthesis approach. Angew. Chem. 131, 5608–5612 (2019).

    Google Scholar 

  26. 26.

    Wang, N. et al. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photon. 10, 699–704 (2016).

    CAS  Google Scholar 

  27. 27.

    Yuan, M. et al. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11, 872–877 (2016).

    CAS  Google Scholar 

  28. 28.

    Qin, C. et al. Triplet management for efficient perovskite light-emitting diodes. Nat. Photon. 14, 70–75 (2020).

    CAS  Google Scholar 

  29. 29.

    Gao, Y. et al. Molecular engineering of organic–inorganic hybrid perovskites quantum wells. Nat. Chem. 11, 1151–1157 (2019).

    CAS  Google Scholar 

  30. 30.

    Chen, B., Rudd, P. N., Yang, S., Yuan, Y. & Huang, J. Imperfections and their passivation in halide perovskite solar cells. Chem. Soc. Rev. 48, 3842–3867 (2019).

    CAS  Google Scholar 

  31. 31.

    Ball, J. M. & Petrozza, A. Defects in perovskite-halides and their effects in solar cells. Nat. Energy 1, 16149 (2016).

    CAS  Google Scholar 

  32. 32.

    Nenon, D. P. et al. Design principles for trap-free CsPbX3 nanocrystals: enumerating and eliminating surface halide vacancies with softer Lewis bases. J. Am. Chem. Soc. 140, 17760–17772 (2018).

    CAS  Google Scholar 

  33. 33.

    Lee, S. et al. Versatile defect passivation methods for metal halide perovskite materials and their application to light-emitting devices. Adv. Mater. 31, 1805244 (2019).

    Google Scholar 

  34. 34.

    Quan, L. N. et al. Edge stabilization in reduced-dimensional perovskites. Nat. Commun. 11, 170 (2020).

    Google Scholar 

  35. 35.

    De Roo, J. et al. Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals. ACS Nano 10, 2071–2081 (2016).

    Google Scholar 

  36. 36.

    Chiba, T. & Kido, J. Lead halide perovskite quantum dots for light-emitting devices. J. Mater. Chem. C. 6, 11868–11877 (2018).

    CAS  Google Scholar 

  37. 37.

    Bae, W. K. et al. Controlling the influence of Auger recombination on the performance of quantum-dot light-emitting diodes. Nat. Commun. 4, 2661 (2013).

    Google Scholar 

  38. 38.

    Wehrenfennig, C., Eperon, G. E., Johnston, M. B., Snaith, H. J. & Herz, L. M. High charge carrier mobilities and lifetimes in organolead trihalide perovskites. Adv. Mater. 26, 1584–1589 (2014).

    CAS  Google Scholar 

  39. 39.

    Zou, W. et al. Minimising efficiency roll-off in high-brightness perovskite light-emitting diodes. Nat. Commun. 9, 608 (2018).

    Google Scholar 

  40. 40.

    Makarov, N. S. et al. Spectral and dynamical properties of single excitons, biexcitons, and trions in cesium–lead-halide perovskite quantum dots. Nano Lett. 16, 2349–2362 (2016).

    CAS  Google Scholar 

  41. 41.

    Castañeda, J. A. et al. Efficient biexciton interaction in perovskite quantum dots under weak and strong confinement. ACS Nano 10, 8603–8609 (2016).

    Google Scholar 

  42. 42.

    Eperon, G. E., Jedlicka, E. & Ginger, D. S. Biexciton Auger recombination differs in hybrid and inorganic halide perovskite quantum dots. J. Phys. Chem. Lett. 9, 104–109 (2018).

    CAS  Google Scholar 

  43. 43.

    Zhang, L. et al. Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes. Nat. Commun. 8, 15640 (2017).

    CAS  Google Scholar 

  44. 44.

    Bi, C. et al. Non-wetting surface-driven high-aspect-ratio crystalline grain growth for efficient hybrid perovskite solar cells. Nat. Commun. 6, 7747 (2015).

    CAS  Google Scholar 

  45. 45.

    Jung, E. H. et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019).

    CAS  Google Scholar 

  46. 46.

    Yang, X. et al. Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation. Nat. Commun. 9, 570 (2018).

    Google Scholar 

  47. 47.

    Yuan, Z. et al. Unveiling the synergistic effect of precursor stoichiometry and interfacial reactions for perovskite light-emitting diodes. Nat. Commun. 10, 2818 (2019).

    Google Scholar 

  48. 48.

    Song, J. et al. Quantum dot light-emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3). Adv. Mater. 27, 7162–7167 (2015).

    CAS  Google Scholar 

  49. 49.

    Li, G. et al. Highly efficient perovskite nanocrystal light-emitting diodes enabled by a universal crosslinking method. Adv. Mater. 28, 3528–3534 (2016).

    CAS  Google Scholar 

  50. 50.

    Shi, Z. et al. Strategy of solution-processed all-inorganic heterostructure for humidity/temperature-stable perovskite quantum dot light-emitting diodes. ACS Nano 12, 1462–1472 (2018).

    CAS  Google Scholar 

  51. 51.

    Shi, X.-B. et al. Optical energy losses in organic–inorganic hybrid perovskite light-emitting diodes. Adv. Opt. Mater. 6, 1800667 (2018).

    Google Scholar 

  52. 52.

    Zhang, Q. et al. Efficient metal halide perovskite light-emitting diodes with significantly improved light extraction on nanophotonic substrates. Nat. Commun. 10, 727 (2019).

    Google Scholar 

  53. 53.

    Shen, Y. et al. High-efficiency perovskite light-emitting diodes with synergetic outcoupling enhancement. Adv. Mater. 31, 1901517 (2019).

    Google Scholar 

  54. 54.

    Cho, C. et al. The role of photon recycling in perovskite light-emitting diodes. Nat. Commun. 11, 611 (2020).

    CAS  Google Scholar 

  55. 55.

    Wang, H. et al. Perovskite-molecule composite thin films for efficient and stable light-emitting diodes. Nat. Commun. 11, 891 (2020).

    CAS  Google Scholar 

  56. 56.

    Kim, K.-H. et al. Phosphorescent dye-based supramolecules for high-efficiency organic light-emitting diodes. Nat. Commun. 5, 4769 (2014).

    CAS  Google Scholar 

  57. 57.

    Jurow, M. J. et al. Tunable anisotropic photon emission from self-organized CsPbBr3 perovskite nanocrystals. Nano Lett. 17, 4534–4540 (2017).

    CAS  Google Scholar 

  58. 58.

    Anaya, M. et al. Best practices for measuring emerging light-emitting diode technologies. Nat. Photon. 13, 818–821 (2019).

    CAS  Google Scholar 

  59. 59.

    Zhao, L. et al. Electrical stress influences the efficiency of CH3NH3PbI3 perovskite light emitting devices. Adv. Mater. 29, 1605317 (2017).

    Google Scholar 

  60. 60.

    Snaith, H. J. et al. Anomalous hysteresis in perovskite solar cells. J. Phys. Chem. Lett. 5, 1511–1515 (2014).

    CAS  Google Scholar 

  61. 61.

    Liu, Y. et al. Efficient blue light-emitting diodes based on quantum-confined bromide perovskite nanostructures. Nat. Photon. 13, 760–764 (2019).

    CAS  Google Scholar 

  62. 62.

    Wang, Q. et al. Efficient sky-blue perovskite light-emitting diodes via photoluminescence enhancement. Nat. Commun. 10, 5633 (2019).

    CAS  Google Scholar 

  63. 63.

    Miao, Y. et al. Stable and bright formamidinium-based perovskite light-emitting diodes with high energy conversion efficiency. Nat. Commun. 10, 3624 (2019).

    Google Scholar 

  64. 64.

    Féry, C., Racine, B., Vaufrey, D., Doyeux, H. & Cinà, S. Physical mechanism responsible for the stretched exponential decay behavior of aging organic light-emitting diodes. Appl. Phys. Lett. 87, 213502 (2005).

    Google Scholar 

  65. 65.

    Li, C.-H. A., Zhou, Z., Vashishtha, P. & Halpert, J. E. The future is blue (LEDs): why chemistry is the key to perovskite displays. Chem. Mater. 31, 6003–6032 (2019).

    CAS  Google Scholar 

  66. 66.

    Vashishtha, P. & Halpert, J. E. Field-driven ion migration and color instability in red-emitting mixed halide perovskite nanocrystal light-emitting diodes. Chem. Mater. 29, 5965–5973 (2017).

    CAS  Google Scholar 

  67. 67.

    Yuan, Y. & Huang, J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49, 286–293 (2016).

    CAS  Google Scholar 

  68. 68.

    Brivio, F., Caetano, C. & Walsh, A. Thermodynamic origin of photoinstability in the CH3NH3Pb(I1–xBrx)3 hybrid halide perovskite alloy. J. Phys. Chem. Lett. 7, 1083–1087 (2016).

    CAS  Google Scholar 

  69. 69.

    Zhao, J. et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3, eaao5616 (2017).

    Google Scholar 

  70. 70.

    Tennyson, E. M., Doherty, T. A. S. & Stranks, S. D. Heterogeneity at multiple length scales in halide perovskite semiconductors. Nat. Rev. Mater. 4, 573–587 (2019).

    CAS  Google Scholar 

  71. 71.

    Draguta, S. et al. Rationalizing the light-induced phase separation of mixed halide organic–inorganic perovskites. Nat. Commun. 8, 200 (2017).

    Google Scholar 

  72. 72.

    Li, Z. et al. Modulation of recombination zone position for quasi-two-dimensional blue perovskite light-emitting diodes with efficiency exceeding 5%. Nat. Commun. 10, 1027 (2019).

    Google Scholar 

  73. 73.

    Vashishtha, P., Ng, M., Shivarudraiah, S. B. & Halpert, J. E. High efficiency blue and green light-emitting diodes using Ruddlesden–Popper inorganic mixed halide perovskites with butylammonium interlayers. Chem. Mater. 31, 83–89 (2019).

    CAS  Google Scholar 

  74. 74.

    Yantara, N. et al. Designing the perovskite structural landscape for efficient blue emission. ACS Energy Lett. 5, 1593–1600 (2020).

    CAS  Google Scholar 

  75. 75.

    Si, J. et al. Efficient and high-color-purity light-emitting diodes based on in situ grown films of CsPbX3 (X = Br, I) nanoplates with controlled thicknesses. ACS Nano 11, 11100–11107 (2017).

    CAS  Google Scholar 

  76. 76.

    Tsai, H. et al. Stable light‐emitting diodes using phase‐pure Ruddlesden–Popper layered perovskites. Adv. Mater. 30, 1704217 (2018).

    Google Scholar 

  77. 77.

    Tanaka, K. et al. Comparative study on the excitons in lead-halide-based perovskite-type crystals CH3NH3PbBr3 CH3NH3PbI3. Solid State Commun. 127, 619–623 (2003).

    CAS  Google Scholar 

  78. 78.

    Bekenstein, Y., Koscher, B. A., Eaton, S. W., Yang, P. & Alivisatos, A. P. Highly luminescent colloidal nanoplates of perovskite cesium lead halide and their oriented assemblies. J. Am. Chem. Soc. 137, 16008–16011 (2015).

    CAS  Google Scholar 

  79. 79.

    Bertolotti, F. et al. Crystal structure, morphology, and surface termination of cyan-emissive, six-monolayers-thick CsPbBr3 nanoplatelets from X-ray total scattering. ACS Nano 13, 14294–14307 (2019).

    CAS  Google Scholar 

  80. 80.

    Jagielski, J. et al. Scalable photonic sources using two-dimensional lead halide perovskite superlattices. Nat. Commun. 11, 387 (2020).

    CAS  Google Scholar 

  81. 81.

    Bi, C. et al. Spontaneous self-assembly of cesium lead halide perovskite nanoplatelets into cuboid crystals with high intensity blue emission. Adv. Sci. 6, 1900462 (2019).

    Google Scholar 

  82. 82.

    Linaburg, M. R., McClure, E. T., Majher, J. D. & Woodward, P. M. Cs1–xRbxPbCl3 and Cs1–xRbxPbBr3 solid solutions: understanding octahedral tilting in lead halide perovskites. Chem. Mater. 29, 3507–3514 (2017).

    CAS  Google Scholar 

  83. 83.

    Jiang, Y. et al. Spectra stable blue perovskite light-emitting diodes. Nat. Commun. 10, 1868 (2019).

    Google Scholar 

  84. 84.

    van der Stam, W. et al. Highly emissive divalent-ion-doped colloidal CsPb1–xMxBr3 perovskite nanocrystals through cation exchange. J. Am. Chem. Soc. 139, 4087–4097 (2017).

    Google Scholar 

  85. 85.

    Wang, H. et al. Trifluoroacetate induced small-grained CsPbBr3 perovskite films result in efficient and stable light-emitting devices. Nat. Commun. 10, 665 (2019).

    Google Scholar 

  86. 86.

    Snaith, H. J. & Hacke, P. Enabling reliability assessments of pre-commercial perovskite photovoltaics with lessons learned from industrial standards. Nat. Energy 3, 459–465 (2018).

    Google Scholar 

  87. 87.

    Senocrate, A. et al. The nature of ion conduction in methylammonium lead iodide: a multimethod approach. Angew. Chem. Int. Ed. 56, 7755–7759 (2017).

    CAS  Google Scholar 

  88. 88.

    Xu, M. et al. A transient-electroluminescence study on perovskite light-emitting diodes. Appl. Phys. Lett. 115, 041102 (2019).

    Google Scholar 

  89. 89.

    Sutanto, A. A. et al. In situ analysis reveals the role of 2D perovskite in preventing thermal-induced degradation in 2D/3D perovskite interfaces. Nano Lett. 20, 3992–3998 (2020).

    CAS  Google Scholar 

  90. 90.

    Yu, J. C. et al. Improving the stability and performance of perovskite light-emitting diodes by thermal annealing treatment. Adv. Mater. 28, 6906–6913 (2016).

    CAS  Google Scholar 

  91. 91.

    Zhao, L. et al. Redox chemistry dominates the degradation and decomposition of metal halide perovskite optoelectronic devices. ACS Energy Lett. 1, 595–602 (2016).

    CAS  Google Scholar 

  92. 92.

    Babayigit, A., Ethirajan, A., Muller, M. & Conings, B. Toxicity of organometal halide perovskite solar cells. Nat. Mater. 15, 247–251 (2016).

    CAS  Google Scholar 

  93. 93.

    Ning, W. & Gao, F. Structural and functional diversity in lead-free halide perovskite materials. Adv. Mater. 31, 1900326 (2019).

    Google Scholar 

  94. 94.

    Lanzetta, L., Marin-Beloqui, J. M., Sanchez-Molina, I., Ding, D. & Haque, S. A. Two-dimensional organic tin halide perovskites with tunable visible emission and their use in light-emitting devices. ACS Energy Lett. 2, 1662–1668 (2017).

    CAS  Google Scholar 

  95. 95.

    Ma, Z. et al. Electrically-driven violet light-emitting devices based on highly stable lead-free perovskite Cs3Sb2Br9 quantum dots. ACS Energy Lett. 5, 385–394 (2020).

    CAS  Google Scholar 

  96. 96.

    Jun, T. et al. Lead-free highly efficient blue-emitting Cs3Cu2I5 with 0D electronic structure. Adv. Mater. 30, 1804547 (2018).

    Google Scholar 

  97. 97.

    Lu, S. et al. Accelerated discovery of stable lead-free hybrid organic–inorganic perovskites via machine learning. Nat. Commun. 9, 3405 (2018).

    Google Scholar 

  98. 98.

    Gong, X. et al. Highly efficient quantum dot near-infrared light-emitting diodes. Nat. Photon. 10, 253–257 (2016).

    CAS  Google Scholar 

  99. 99.

    Vasilopoulou, M. et al. Efficient colloidal quantum dot light-emitting diodes operating in the second near-infrared biological window. Nat. Photon. 14, 50–56 (2020).

    CAS  Google Scholar 

  100. 100.

    Mao, J. et al. All-perovskite emission architecture for white light-emitting diodes. ACS Nano 12, 10486–10492 (2018).

    CAS  Google Scholar 

  101. 101.

    Li, S., Luo, J., Liu, J. & Tang, J. Self-trapped excitons in all-inorganic halide perovskites: fundamentals, status, and potential applications. J. Phys. Chem. Lett. 10, 1999–2007 (2019).

    CAS  Google Scholar 

  102. 102.

    Zhou, N. et al. Perovskite nanowire–block copolymer composites with digitally programmable polarization anisotropy. Sci. Adv. 5, eaav8141 (2019).

    CAS  Google Scholar 

  103. 103.

    Bade, S. G. R. et al. Fully printed halide perovskite light-emitting diodes with silver nanowire electrodes. ACS Nano 10, 1795–1801 (2016).

    CAS  Google Scholar 

  104. 104.

    Zhao, L. et al. Influence of bulky organo-ammonium halide additive choice on the flexibility and efficiency of perovskite light-emitting device. Adv. Funct. Mater. 28, 1802060 (2018).

    Google Scholar 

  105. 105.

    Chou, S.-Y. et al. Transparent perovskite light-emitting touch-responsive device. ACS Nano 11, 11368–11375 (2017).

    CAS  Google Scholar 

  106. 106.

    Xing, G. et al. Low-temperature solution-processed wavelength-tunable perovskites for lasing. Nat. Mater. 13, 476–480 (2014).

    CAS  Google Scholar 

  107. 107.

    Gunnarsson, W. B. & Rand, B. P. Electrically driven lasing in metal halide perovskites: challenges and outlook. APL Mater. 8, 030902 (2020).

    CAS  Google Scholar 

  108. 108.

    Kim, H. et al. Hybrid perovskite light emitting diodes under intense electrical excitation. Nat. Commun. 9, 4893 (2018).

    Google Scholar 

  109. 109.

    Jia, Y. et al. Diode-pumped organo-lead halide perovskite lasing in a metal-clad distributed feedback resonator. Nano Lett. 16, 4624–4629 (2016).

    CAS  Google Scholar 

  110. 110.

    Zhao, L. et al. Thermal management enables bright and stable perovskite light-emitting diodes. Adv. Mater. 32, 2000752 (2020).

    CAS  Google Scholar 

Download references


We thank O. Inganäs, J. Qin and N. K. Kumawat for discussions. We acknowledge financial support from a European Research Council Starting Grant (no. 717026), the Swedish Energy Agency Energimyndigheten (no. 48758-1), the Swedish Foundation for International Cooperation in Research and Higher Education (no. CH2018-7736), and the Swedish Government Strategic Research Area in Materials Science on Functional Materials at Linköping University (Faculty Grant SFO-Mat-LiU No. 2009-00971). R.H.F. acknowledges support from the UK Engineering and Physical Sciences Research Council. J.W. acknowledges financial support from the Joint Research Program between China and the European Union (2016YFE0112000). Y.J. acknowledges support from the National Key Research and Development Program of China (2016YFB0401600) and the National Natural Science Foundation of China (21975220, 91833303, 91733302 and 51911530155). X.-K.L. is a Marie Skłodowska-Curie Fellow (no. 798861). F.G. is a Wallenberg Academy Fellow.

Author information



Corresponding author

Correspondence to Feng Gao.

Ethics declarations

Competing interests

R.H.F. is a director of Helio Display Materials Ltd. The other authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Xu, W., Bai, S. et al. Metal halide perovskites for light-emitting diodes. Nat. Mater. (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing