Abstract
The choice of simulation methods in computational materials science is driven by a fundamental trade-off: bridging large time- and length-scales with highly accurate simulations at an affordable computational cost. Venturing the investigation of complex phenomena on large scales requires fast yet accurate computational methods. We review the emerging field of machine-learned potentials, which promises to reach the accuracy of quantum mechanical computations at a substantially reduced computational cost. This Review will summarize the basic principles of the underlying machine learning methods, the data acquisition process and active learning procedures. We highlight multiple recent applications of machine-learned potentials in various fields, ranging from organic chemistry and biomolecules to inorganic crystal structure predictions and surface science. We furthermore discuss the developments required to promote a broader use of ML potentials, and the possibility of using them to help solve open questions in materials science and facilitate fully computational materials design.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Inverse design of chiral functional films by a robotic AI-guided system
Nature Communications Open Access 04 October 2023
-
Discrepancies and error evaluation metrics for machine learning interatomic potentials
npj Computational Materials Open Access 26 September 2023
-
Ultra-fast interpretable machine-learning potentials
npj Computational Materials Open Access 02 September 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Sanchez-Lengeling, B. & Aspuru-Guzik, A. Inverse molecular design using machine learning: generative models for matter engineering. Science 361, 360–365 (2018).
Tabor, D. P. et al. Accelerating the discovery of materials for clean energy in the era of smart automation. Nat. Rev. Mater. 3, 5–20 (2018).
Popova, M., Isayev, O. & Tropsha, A. Deep reinforcement learning for de novo drug design. Sci. Adv. 4, eaap7885 (2018).
Car, R. & Parrinello, M. Unified approach for molecular dynamics and density-functional theory. Phys. Rev. Lett. 55, 2471–2474 (1985).
Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992).
Karplus, M. & McCammon, J. A. Molecular dynamics simulations of biomolecules. Nat. Struct. Mol. Biol. 9, 646–652 (2002).
Sugita, Y. & Okamoto, Y. Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999).
Lindorff-Larsen, K., Piana, S., Dror, R. O. & Shaw, D. E. How fast-folding proteins fold. Science 334, 517–520 (2011).
Piana, S., Lindorff-Larsen, K. & Shaw, D. E. How robust are protein folding simulations with respect to force field parameterization? Biophys. J. 100, L47–49 (2011).
van Duin, A. C. T., Dasgupta, S., Lorant, F. & Goddard, W. A. ReaxFF: a reactive force field for hydrocarbons. J. Phys. Chem. A 105, 9396–9409 (2001).
Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).
Behler, J. Neural network potential-energy surfaces in chemistry: a tool for large-scale simulations. Phys. Chem. Chem. Phys. 13, 17930–17955 (2011).
Izvekov, S., Parrinello, M., Burnham, C. J. & Voth, G. A. Effective force fields for condensed phase systems from ab initio molecular dynamics simulation: a new method for force-matching. J. Chem. Phys. 120, 10896–10913 (2004).
Blank, T. B., Brown, S. D., Calhoun, A. W. & Doren, D. J. Neural network models of potential energy surfaces. J. Chem. Phys. 103, 4129–4137 (1995).
Ercolessi, F. & Adams, J. B. Interatomic potentials from first-principles calculations. MRS Proc. 291, 31 (1992).
Ischtwan, J. & Collins, M. A. Molecular potential energy surfaces by interpolation. J. Chem. Phys. 100, 8080–8088 (1994).
Ho, T. & Rabitz, H. A general method for constructing multidimensional molecular potential energy surfaces from ab initio calculations. J. Chem. Phys. 104, 2584–2597 (1996).
Smith, J. S., Isayev, O. & Roitberg, A. E. ANI-1: an extensible neural network potential with DFT accuracy at force field computational cost. Chem. Sci. 8, 3192–3203 (2017).
Butler, K. T., Davies, D. W., Cartwright, H., Isayev, O. & Walsh, A. Machine learning for molecular and materials science. Nature 559, 547–555 (2018).
Behler, J. Representing potential energy surfaces by high-dimensional neural network potentials. J. Phys. Condens. Matter 26, 183001 (2014).
Bernstein, N. et al. Quantifying chemical structure and machine‐learned atomic energies in amorphous and liquid silicon. Angew. Chem. Int. Ed. Engl. 131, 7131–7135 (2019).
Deringer, V. L., Proserpio, D. M., Csányi, G. & Pickard, C. J. Data-driven learning and prediction of inorganic crystal structures. Faraday Discuss. 211, 45–59 (2018).
Geiger, P. & Dellago, C. Neural networks for local structure detection in polymorphic systems. J. Chem. Phys. 139, 164105 (2013).
Simm, G. N. & Reiher, M. Error-controlled exploration of chemical reaction networks with Gaussian processes. J. Chem. Theory Comput. 14, 5238–5248 (2018).
An, S. J. et al. The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon 105, 52–76 (2016).
Reddy, G., Liu, Z. & Thirumalai, D. Denaturant-dependent folding of GFP. Proc. Natl Acad. Sci. USA 109, 17832–17838 (2012).
Shu, Y. & Levine, B. G. Communication: non-radiative recombination via conical intersection at a semiconductor defect. J. Chem. Phys. 139, 081102 (2013).
Ercolessi, F. & Adams, J. B. Interatomic potentials from first-principles calculations: the force-matching method. Europhys. Lett. 26, 583–588 (1994).
Lorenz, S., Groß, A. & Scheffler, M. Representing high-dimensional potential-energy surfaces for reactions at surfaces by neural networks. Chem. Phys. Lett. 395, 210–215 (2004).
Ciresan, D. C., Meier, U., Masci, J., Gambardella, L. M. & Schmidhuber, J. Flexible, high performance convolutional neural networks for image classification. In Twenty-Second International Joint Conference on Artificial Intelligence (IJCAI, 2011).
Wang, L., Wu, W., Xiao, J. & Yi, Y. Large scale artificial neural network training using multi-GPUs. Preprint at https://arxiv.org/abs/1511.04348 (2015).
Steinkraus, D., Buck, I. & Simard, P. Y. Using GPUs for machine learning algorithms. In Eighth International Conference on Document Analysis and Recognition Vol. 2 1115–1120 (IEEE, 2005).
LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).
Yao, K., Herr, J. E., Toth, D. W., Mckintyre, R. & Parkhill, J. The TensorMol-0.1 model chemistry: a neural network augmented with long-range physics. Chem. Sci. 9, 2261–2269 (2018).
Lubbers, N., Smith, J. S. & Barros, K. Hierarchical modeling of molecular energies using a deep neural network. J. Chem. Phys. 148, 241715 (2018).
Behler, J. Constructing high-dimensional neural network potentials: a tutorial review. Int. J. Quantum Chem. 115, 1032–1050 (2015).
Smith, J. S., Isayev, O. & Roitberg, A. E. ANI-1, a data set of 20 million calculated off-equilibrium conformations for organic molecules. Sci. Data 4, 170193 (2017).
Schütt, K. T., Arbabzadah, F., Chmiela, S., Müller, K. R. & Tkatchenko, A. Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017).
Chmiela, S. et al. Machine learning of accurate energy-conserving molecular force fields. Sci. Adv. 3, e1603015 (2017).
Behler, J. Perspective: machine learning potentials for atomistic simulations. J. Chem. Phys. 145, 170901 (2016).
Simm, G. N., Proppe, J. & Reiher, M. Error assessment of computational models in chemistry. Chimia 71, 202–208 (2017).
Settles, B. Active Learning (Morgan & Claypool, 2012).
Brown, D. F. R., Gibbs, M. N. & Clary, D. C. Combining ab initio computations, neural networks, and diffusion Monte Carlo: an efficient method to treat weakly bound molecules. J. Chem. Phys. 105, 7597–7604 (1996).
Collins, C. R., Gordon, G. J., von Lilienfeld, O. A. & Yaron, D. J. Constant size descriptors for accurate machine learning models of molecular properties. J. Chem. Phys. 148, 241718 (2018).
Cubuk, E. D., Malone, B. D., Onat, B., Waterland, A. & Kaxiras, E. Representations in neural network based empirical potentials. J. Chem. Phys. 147, 024104 (2017).
Faber, F., Lindmaa, A., von Lilienfeld, O. A. & Armiento, R. Crystal structure representations for machine learning models of formation energies. Int. J. Quant. Chem. 115, 1094–1101 (2015).
Schütt, K. T. et al. How to represent crystal structures for machine learning: towards fast prediction of electronic properties. Phys. Rev. B 89, 205118 (2014).
Duvenaud, D. K. et al. Convolutional networks on graphs for learning molecular fingerprints. In Advances in Neural Information Processing Systems Vol. 28 2224–2232 (NeurIPS, 2015).
Rupp, M., Tkatchenko, A., Müller, K.-R. & von Lilienfeld, O. A. Fast and accurate modeling of molecular atomization energies with machine learning. Phys. Rev. Lett. 108, 058301 (2012).
Friederich, P., Konrad, M., Strunk, T. & Wenzel, W. Machine learning of correlated dihedral potentials for atomistic molecular force fields. Sci. Rep. 8, 2559 (2018).
Westermayr, J. et al. Machine learning enables long time scale molecular photodynamics simulations. Chem. Sci. 10, 8100–8107 (2019).
Bartók, A. P., Gillan, M. J., Manby, F. R. & Csányi, G. Machine-learning approach for one- and two-body corrections to density functional theory: applications to molecular and condensed water. Phys. Rev. B Condens. Matter 88, 054104 (2013).
Huo, H. & Rupp, M. Unified representation of molecules and crystals for machine learning. Preprint at https://arxiv.org/abs/1704.06439 (2017).
Wang, H., Zhang, L., Han, J. & Weinan, E. DeePMD-kit: a deep learning package for many-body potential energy representation and molecular dynamics. Comput. Phys. Commun. 228, 178–184 (2018).
Yoo, D. et al. Atomic energy mapping of neural network potential. Phys. Rev. Mater. 3, 093802 (2019).
Chapman, D. E., Steck, J. K. & Nerenberg, P. S. Optimizing protein-protein van der Waals interactions for the AMBER ff9x/ff12 force field. J. Chem. Theory Comput. 10, 273–281 (2014).
Handley, C. M. & Popelier, P. L. A. Dynamically polarizable water potential based on multipole moments trained by machine learning. J. Chem. Theory Comput. 5, 1474–1489 (2009).
Mills, M. J. L. & Popelier, P. L. A. Electrostatic forces: formulas for the first derivatives of a polarizable, anisotropic electrostatic potential energy function based on machine learning. J. Chem. Theory Comput. 10, 3840–3856 (2014).
Unke, O. T. & Meuwly, M. PhysNet: a neural network for predicting energies, forces, dipole moments and partial charges. J. Chem. Theory Comput. 15, 3678–3693 (2019).
Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).
Gastegger, M., Behler, J. & Marquetand, P. Machine learning molecular dynamics for the simulation of infrared spectra. Chem. Sci. 8, 6924–6935 (2017).
Bereau, T., Andrienko, D. & von Lilienfeld, O. A. Transferable atomic multipole machine learning models for small organic molecules. J. Chem. Theory Comput. 11, 3225–3233 (2015).
Sifain, A. E. et al. Discovering a transferable charge assignment model using machine learning. J. Phys. Chem. Lett. 9, 4495–4501 (2018).
Bereau, T., DiStasio, R. A. Jr, Tkatchenko, A. & von Lilienfeld, O. A. Non-covalent interactions across organic and biological subsets of chemical space: Physics-based potentials parametrized from machine learning. J. Chem. Phys. 148, 241706 (2018).
Ramakrishnan, R. & von Lilienfeld, O. A. Many molecular properties from one kernel in chemical space. Chimia 69, 182–186 (2015).
Rupp, M. Machine learning for quantum mechanics in a nutshell. Int. J. Quantum Chem. 115, 1058–1073 (2015).
Bartók, A. P., Payne, M. C., Kondor, R. & Csányi, G. Gaussian approximation potentials: the accuracy of quantum mechanics, without the electrons. Phys. Rev. Lett. 104, 136403 (2010).
Deringer, V. L. & Csányi, G. Machine learning based interatomic potential for amorphous carbon. Phys. Rev. B Condens. Matter 95, 094203 (2017).
Thacker, J. C. R. et al. Towards the simulation of biomolecules: optimisation of peptide-capped glycine using FFLUX. Mol. Simula. 44, 881–890 (2018).
Uteva, E., Graham, R. S., Wilkinson, R. D. & Wheatley, R. J. Interpolation of intermolecular potentials using Gaussian processes. J. Chem. Phys. 147, 161706 (2017).
Denzel, A. & Kästner, J. Gaussian process regression for transition state search. J. Chem. Theory Comput. 14, 5777–5786 (2018).
Weiss, Y., Schölkopf, B. & Platt, J. C. (eds) Advances in Neural Information Processing Systems 18: Proceedings of the 2005 Conference (Bradford Books, 2006).
Seeger, M., Williams, C. & Lawrence, N. Fast forward selection to speed up sparse Gaussian process regression. In Artificial Intelligence and Statistics 9 (EPFL, 2003).
Bartók, A. P., Kondor, R. & Csányi, G. On representing chemical environments. Phys. Rev. B 87, 184115 (2013).
Szlachta, W. J., Bartók, A. P. & Csányi, G. Accuracy and transferability of Gaussian approximation potential models for tungsten. Phys. Rev. B Condens. Matter 90, 104108 (2014).
Yang, L., Dacek, S. & Ceder, G. Proposed definition of crystal substructure and substructural similarity. Phys. Rev. B 90, 054102 (2014).
De, S., Bartók, A. P., Csányi, G. & Ceriotti, M. Comparing molecules and solids across structural and alchemical space. Phys. Chem. Chem. Phys. 18, 13754–13769 (2016).
Bartók, A. P. et al. Machine learning unifies the modeling of materials and molecules. Sci. Adv. 3, e1701816 (2017).
Imbalzano, G. et al. Automatic selection of atomic fingerprints and reference configurations for machine-learning potentials. J. Chem. Phys. 148, 241730 (2018).
Mahoney, M. W. & Drineas, P. CUR matrix decompositions for improved data analysis. Proc. Natl Acad. Sci. USA 106, 697–702 (2009).
MacKay, D. J. C. in Models of Neural Networks III (eds Domany, E., van Hemmen, J. L. & Schulten, K.) 211–254 (1996).
Chmiela, S., Sauceda, H. E., Müller, K.-R. & Tkatchenko, A. Towards exact molecular dynamics simulations with machine-learned force fields. Nat. Commun. 9, 3887 (2018).
Pyzer-Knapp, E. O., Li, K. & Aspuru-Guzik, A. Learning from the Harvard clean energy project: the use of neural networks to accelerate materials discovery. Adv. Funct. Mater. 25, 6495–6502 (2015).
Faber, F. A., Lindmaa, A., von Lilienfeld, O. A. & Armiento, R. Machine learning energies of 2 million elpasolite (ABC2D6) crystals. Phys. Rev. Lett. 117, 135502 (2016).
Yao, K., Herr, J. E., Brown, S. N. & Parkhill, J. Intrinsic bond energies from a bonds-in-molecules neural network. J. Phys. Chem. Lett. 8, 2689–2694 (2017).
Csányi, G., Albaret, T., Payne, M. C. & De Vita, A. ‘Learn on the fly’: a hybrid classical and quantum-mechanical molecular dynamics simulation. Phys. Rev. Lett. 93, 175503 (2004).
Deringer, V. L. et al. Realistic atomistic structure of amorphous silicon from machine-learning-driven molecular dynamics. J. Phys. Chem. Lett. 9, 2879–2885 (2018).
Sosso, G. C., Deringer, V. L., Elliott, S. R. & Csányi, G. Understanding the thermal properties of amorphous solids using machine-learning-based interatomic potentials. Mol. Simula. 44, 866–880 (2018).
Deringer, V. L., Pickard, C. J. & Csányi, G. Data-driven learning of total and local energies in elemental boron. Phys. Rev. Lett. 120, 156001 (2018).
Botu, V. & Ramprasad, R. Adaptive machine learning framework to accelerate ab initio molecular dynamics. Int. J. Quant. Chem. 115, 1074–1083 (2015).
Smith, J. S., Nebgen, B., Lubbers, N., Isayev, O. & Roitberg, A. E. Less is more: sampling chemical space with active learning. J. Chem. Phys. 148, 241733 (2018).
MacKay, D. J. C. Bayesian methods for neural networks: theory and applications. Netw. Comput. Neural Sys. 6, 469–505 (1995).
Proppe, J., Gugler, S. & Reiher, M. Gaussian process-based refinement of dispersion corrections. J. Chem. Theory Comput. 15, 6046–6060 (2019).
Gómez-Bombarelli, R. et al. Automatic chemical design using a data-driven continuous representation of molecules. ACS Cent. Sci. 4, 268–276 (2018).
Häse, F., Roch, L. M., Kreisbeck, C. & Aspuru-Guzik, A. Phoenics: a Bayesian optimizer for chemistry. ACS Cent. Sci. 4, 1134–1145 (2018).
Häse, F., Roch, L. M. & Aspuru-Guzik, A. Chimera: enabling hierarchy based multi-objective optimization for self-driving laboratories. Chem. Sci. 9, 7642–7655 (2018).
Hernández-Lobato, J. M., Requeima, J., Pyzer-Knapp, E. O. & Aspuru-Guzik, A. Parallel and distributed thompson sampling for large-scale accelerated exploration of chemical space. In Proc. 34th Int. Conf. Machine Learning Vol. 70 1470–1479 (JMLR, 2017).
Zhang, L., Wang, H. & E, W. Reinforced dynamics for enhanced sampling in large atomic and molecular systems. J. Chem. Phys. 148, 124113 (2018).
Gubaev, K., Podryabinkin, E. V. & Shapeev, A. V. Machine learning of molecular properties: locality and active learning. J. Chem. Phys. 148, 241727 (2018).
Podryabinkin, E. V. & Shapeev, A. V. Active learning of linearly parametrized interatomic potentials. Comput. Mater. Sci. 140, 171–180 (2017).
Kolb, B., Luo, X., Zhou, X., Jiang, B. & Guo, H. High-dimensional atomistic neural network potentials for molecule-surface interactions: HCl scattering from Au(111). J. Phys. Chem. Lett. 8, 666–672 (2017).
Quaranta, V., Hellström, M. & Behler, J. Proton-transfer mechanisms at the water-ZnO interface: the role of presolvation. J. Phys. Chem. Lett. 8, 1476–1483 (2017).
Boes, J. R. & Kitchin, J. R. Neural network predictions of oxygen interactions on a dynamic Pd surface. Mol. Simula. 43, 346–354 (2017).
Bartók, A. P., Kermode, J., Bernstein, N. & Csányi, G. Machine learning a general-purpose interatomic potential for silicon. Phys. Rev. X 8, 041048 (2018).
Artrith, N., Morawietz, T. & Behler, J. High-dimensional neural-network potentials for multicomponent systems: Applications to zinc oxide. Phys. Rev. B 83, 079114 (2011).
Mills, K. et al. Extensive deep neural networks for transferring small scale learning to large scale systems. Chem. Sci. 10, 4129–4140 (2019).
Chiriki, S., Jindal, S. & Bulusu, S. S. Neural network potentials for dynamics and thermodynamics of gold nanoparticles. J. Chem. Phys. 146, 084314 (2017).
Eckhoff, M. & Behler, J. From molecular fragments to the bulk: development of a neural network potential for MOF-5. J. Chem. Theory Comput. 15, 3793–3809 (2019).
Caro, M. A., Deringer, V. L., Koskinen, J., Laurila, T. & Csányi, G. Growth mechanism and origin of high sp3 content in tetrahedral amorphous carbon. Phys. Rev. Lett. 120, 166101 (2018).
Gabardi, S., Sosso, G. G., Behler, J. & Bernasconi, M. Priming effects in the crystallization of the phase change compound GeTe from atomistic simulations. Faraday Discuss. 213, 287–301 (2019).
Mocanu, F. C. et al. Modeling the phase-change memory material, GeSbTe, with machine-learned interatomic potential. J. Phys. Chem. B 122, 8998–9006 (2018).
Artrith, N. & Kolpak, A. M. Understanding the composition and activity of electrocatalytic nanoalloys in aqueous solvents: a combination of DFT and accurate neural network potentials. Nano Lett. 14, 2670–2676 (2014).
Ramakrishnan, R., Dral, P. O., Rupp, M. & von Lilienfeld, O. A. Quantum chemistry structures and properties of 134 kilo molecules. Sci. Data 1, 140022 (2014).
Fletcher, T. L. & Popelier, P. L. A. Toward amino acid typing for proteins in FFLUX. J. Comput. Chem. 38, 336–345 (2017).
Blau, S. M., Bennett, D. I. G., Kreisbeck, C., Scholes, G. D. & Aspuru-Guzik, A. Local protein solvation drives direct down-conversion in phycobiliprotein PC645 via incoherent vibronic transport. Proc. Natl Acad. Sci. USA 115, E3342–E3350 (2018).
Senftle, T. P. et al. The ReaxFF reactive force-field: development, applications and future directions. npj Comput. Mater. 2, 15011 (2016).
Bolhuis, P. G., Chandler, D., Dellago, C. & Geissler, P. L. Transition path sampling: throwing ropes over rough mountain passes, in the dark. Annu. Rev. Phys. Chem. 53, 291–318 (2002).
Reiher, M. (ed.) Topics in Current Chemistry: From Quantum Chemistry to Molecular Simulation (Springer, 2007).
Gaus, M., Cui, Q. & Elstner, M. DFTB3: extension of the self-consistent-charge density-functional tight-binding method (SCC-DFTB). J. Chem. Theory Comput. 7, 931–948 (2012).
Stewart, J. J. P. MOPAC: A semiempirical molecular orbital program. J. Comput. Aided Mol. Des. 4, 1–103 (1990).
Bannwarth, C., Ehlert, S. & Grimme, S. GFN2-xTB-an accurate and broadly parametrized self-consistent tight-binding quantum chemical method with multipole electrostatics and density-dependent dispersion contributions. J. Chem. Theory Comput. 15, 1652–1671 (2019).
Lin, H. & Truhlar, D. G. QM/MM: what have we learned, where are we, and where do we go from here? Theor. Chem. Acc. 117, 185–199 (2007).
Senn, H. M. & Thiel, W. QM/MM studies of enzymes. Curr. Opin. Chem. Biol. 11, 182–187 (2007).
Cui, Q. Perspective: quantum mechanical methods in biochemistry and biophysics. J. Chem. Phys. 145, 140901 (2016).
Pozun, Z. D. et al. Optimizing transition states via kernel-based machine learning. J. Chem. Phys. 136, 174101 (2012).
Li, J., Song, K. & Behler, J. A critical comparison of neural network potentials for molecular reaction dynamics with exact permutation symmetry. Phys. Chem. Chem. Phys. 21, 9672–9682 (2019).
Lu, D. et al. Mode specific dynamics in the H2 + SH → H + H2S reaction. Phys. Chem. Chem. Phys. 18, 29113–29121 (2016).
Kolb, B., Zhao, B., Li, J., Jiang, B. & Guo, H. Permutation invariant potential energy surfaces for polyatomic reactions using atomistic neural networks. J. Chem. Phys. 144, 224103 (2016).
Li, J. & Guo, H. Communication: an accurate full 15 dimensional permutationally invariant potential energy surface for the OH + CH4 → H2O + CH3 reaction. J. Chem. Phys. 143, 221103 (2015).
Gastegger, M. & Marquetand, P. High-dimensional neural network potentials for organic reactions and an improved training algorithm. J. Chem. Theory Comput. 11, 2187–2198 (2015).
Liu, Q. et al. Constructing high-dimensional neural network potential energy surfaces for gas–surface scattering and reactions. J. Phys. Chem. C. 122, 1761–1769 (2018).
Del Cueto, M. et al. New perspectives on CO2–Pt(111) interaction with a high-dimensional neural network potential energy surface. J. Phys. Chem. C. 124, 5174–5181 (2020).
Shakouri, K., Behler, J., Meyer, J. & Kroes, G.-J. Accurate neural network description of surface phonons in reactive gas-surface dynamics: N2 + Ru(0001). J. Phys. Chem. Lett. 8, 2131–2136 (2017).
Behler, J. First principles neural network potentials for reactive simulations of large molecular and condensed systems. Angew. Chem. Int. Ed. Engl. 56, 12828–12840 (2017).
Crespo-Otero, R. & Barbatti, M. Recent advances and perspectives on nonadiabatic mixed quantum-classical dynamics. Chem. Rev. 118, 7026–7068 (2018).
Chen, W.-K., Liu, X.-Y., Fang, W.-H., Dral, P. O. & Cui, G. Deep Learning for nonadiabatic excited-state dynamics. J. Phys. Chem. Lett. 9, 6702–6708 (2018).
Hu, D., Xie, Y., Li, X., Li, L. & Lan, Z. Inclusion of machine learning kernel ridge regression potential energy surfaces in on-the-fly nonadiabatic molecular dynamics simulation. J. Phys. Chem. Lett. 9, 2725–2732 (2018).
Häse, F., Kreisbeck, C. & Aspuru-Guzik, A. Machine learning for quantum dynamics: deep learning of excitation energy transfer properties. Chem. Sci. 8, 8419–8426 (2017).
Richings, G. W. & Habershon, S. Direct quantum dynamics using grid-based wave function propagation and machine-learned potential energy surfaces. J. Chem. Theory Comput. 13, 4012–4024 (2017).
Musil, F., Willatt, M., Langovoy, M. A. & Ceriotti, M. Fast and accurate uncertainty estimation in chemical machine learning. J. Chem. Theory Comput. 15, 906–915 (2019).
Huan, T. D. et al. Iterative-learning strategy for the development of application-specific atomistic force fields. J. Phys. Chem. C. 123, 20715–20722 (2019).
Singraber, A., Behler, J. & Dellago, C. Library-based LAMMPS implementation of high-dimensional neural network potentials. J. Chem. Theory Comput. 15, 1827–1840 (2019).
Schütt, K. T. et al. SchNetPack: a deep learning toolbox for atomistic systems. J. Chem. Theory Comput. 15, 448–455 (2019).
Häse, F., Valleau, S., Pyzer-Knapp, E. & Aspuru-Guzik, A. Machine learning exciton dynamics. Chem. Sci. 7, 5139–5147 (2016).
Zhang, L., Wang, H. & E, W. Adaptive coupling of a deep neural network potential to a classical force field. J. Chem. Phys. 149, 154107 (2018).
Zhang, L., Han, J., Wang, H., Car, R. & E, W. DeePCG: constructing coarse-grained models via deep neural networks. J. Chem. Phys. 149, 034101 (2018).
Galvelis, R. & Sugita, Y. Neural network and nearest neighbor algorithms for enhancing sampling of molecular dynamics. J. Chem. Theory Comput. 13, 2489–2500 (2017).
Chiavazzo, E. et al. Intrinsic map dynamics exploration for uncharted effective free-energy landscapes. Proc. Natl Acad. Sci. USA 114, E5494–E5503 (2017).
Meyer, B., Sawatlon, B., Heinen, S., von Lilienfeld, O. A. & Corminboeuf, C. Machine learning meets volcano plots: computational discovery of cross-coupling catalysts. Chem. Sci. 9, 7069–7077 (2018).
S Smith, J. et al. Outsmarting quantum chemistry through transfer learning. Preprint at https://doi.org/10.26434/chemrxiv.6744440 (2018).
Schütt, K. T., Sauceda, H. E.-J., Kindermans, P., Tkatchenko, A.-R. & Müller, K. SchNet – a deep learning architecture for molecules and materials. J. Chem. Phys. 148, 241722 (2018).
Rasmussen, C. E. & Williams, C. K. I. Gaussian Processes for Machine Learning 10th edn (MIT Press, 2006).
Lu, J., Wang, C. & Zhang, Y. Predicting molecular energy using force-field optimized geometries and atomic vector representations learned from an improved deep tensor neural network. J. Chem. Theory Comput. 15, 4113–4121 (2019).
Nebgen, B. et al. Transferable dynamic molecular charge assignment using deep neural networks. J. Chem. Theory Comput. 14, 4687–4698 (2018).
Acknowledgements
The authors thank G. dos Passos Gomes and S. Y. Guo for helpful discussions about the literature in the field of ML potentials. P.F. acknowledges funding by the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement no. 795206 (MolDesign). J.P. appreciates funding through an Early Postdoc.Mobility fellowship by the Swiss National Science Foundation (project no. 178463). F.H. acknowledges support from the Herchel Smith Graduate Fellowship and the Jacques-Emile Dubois Student Dissertation Fellowship. The authors acknowledge support by the Canadian Institute for Advanced Research and the Canada 150 Research Chair Program, as well as the generous support of A. G. Frøseth.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Friederich, P., Häse, F., Proppe, J. et al. Machine-learned potentials for next-generation matter simulations. Nat. Mater. 20, 750–761 (2021). https://doi.org/10.1038/s41563-020-0777-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-020-0777-6
This article is cited by
-
Machine learning potentials for metal-organic frameworks using an incremental learning approach
npj Computational Materials (2023)
-
Discrepancies and error evaluation metrics for machine learning interatomic potentials
npj Computational Materials (2023)
-
Simulations in the era of exascale computing
Nature Reviews Materials (2023)
-
Ultra-fast interpretable machine-learning potentials
npj Computational Materials (2023)
-
Inverse design of chiral functional films by a robotic AI-guided system
Nature Communications (2023)