Abstract
Metallic alloys containing multiple principal alloying elements have created a growing interest in exploring the property limits of metals and understanding the underlying physical mechanisms. Refractory high-entropy alloys have drawn particular attention due to their high melting points and excellent softening resistance, which are the two key requirements for high-temperature applications. Their compositional space is immense even after considering cost and recyclability restrictions, providing abundant design opportunities. However, refractory high-entropy alloys often exhibit apparent brittleness and oxidation susceptibility, which remain important challenges for their processing and application. Here, utilizing natural-mixing characteristics among refractory elements, we designed a Ti38V15Nb23Hf24 refractory high-entropy alloy that exhibits >20% tensile ductility in the as-cast state, and physicochemical stability at high temperatures. Exploring the underlying deformation mechanisms across multiple length scales, we observe that a rare β′-phase plays an intriguing role in the mechanical response of this alloy. These results reveal the effectiveness of natural-mixing tendencies in expediting high-entropy alloy discovery.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations
Nature Communications Open Access 25 May 2023
-
Mining of lattice distortion, strength, and intrinsic ductility of refractory high entropy alloys
npj Computational Materials Open Access 05 April 2023
-
Toward the design of ultrahigh-entropy alloys via mining six million texts
Nature Communications Open Access 04 January 2023
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
The datasets generated during the current study are available from the corresponding author on request.
References
Cantor, B., Chang, I. T. H., Knight, P. & Vincent, A. J. B. Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng. A 375–377, 213–218 (2004).
Yeh, J. W. et al. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes. Adv. Eng. Mater. https://doi.org/10.1002/adem.200300567 (2004).
Li, Z., Pradeep, K. G., Deng, Y., Raabe, D. & Tasan, C. C. Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature 534, 227–230 (2016).
Gludovatz, B. et al. A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153–1158 (2014).
George, E. P., Raabe, D. & Ritchie, R. O. High entropy alloys. Nat. Rev. Mater. 4, 515–534 (2019).
Yang, T. et al. Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys. Science https://doi.org/10.1126/science.aas8815 (2018).
Jo, Y. H. et al. Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat. Commun. https://doi.org/10.1038/ncomms15719 (2017).
Varvenne, C., Leyson, G. P. M., Ghazisaeidi, M. & Curtin, W. A. Solute strengthening in random alloys. Acta Mater. 124, 660–683 (2017).
Granberg, F. et al. Mechanism of radiation damage reduction in equiatomic multicomponent single phase alloys. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.116.135504 (2016).
Oh, H. S. et al. Engineering atomic-level complexity in high-entropy and complex concentrated alloys. Nat. Commun. 10, 2090 (2019).
Senkov, O. N., Wilks, G. B., Miracle, D. B., Chuang, C. P. & Liaw, P. K. Refractory high-entropy alloys. Intermetallics https://doi.org/10.1016/j.intermet.2010.05.014 (2010).
Senkov, O. N., Wilks, G. B., Scott, J. M. & Miracle, D. B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics https://doi.org/10.1016/j.intermet.2011.01.004 (2011).
Maresca, F. & Curtin, W. A. Mechanistic origin of high strength in refractory BCC high entropy alloys up to 1900K. Acta Mater. https://doi.org/10.1016/j.actamat.2019.10.015 (2020).
Senkov, O. N., Miracle, D. B., Chaput, K. J. & Couzinie, J. P. Development and exploration of refractory high entropy alloys – a review. J. Mater. Res. https://doi.org/10.1557/jmr.2018.153 (2018).
Miracle, D. B. & Senkov, O. N. A critical review of high entropy alloys and related concepts. Acta Materialia https://doi.org/10.1016/j.actamat.2016.08.081 (2017).
Qi, L. & Chrzan, D. C. Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.112.115503 (2014).
Peterson, N. L. Diffusion in Refractory Metals WADD Technical Report 60-793 (Wright Air Development Division, 1960).
Distefano, J. R., Pint, B. A. & Devan, J. H. Oxidation of refractory metals in air and low pressure oxygen gas. Int. J. Refract. Met. Hard Mater. https://doi.org/10.1016/S0263-4368(00)00026-3 (2000).
Lei, Z. et al. Enhanced strength and ductility in a high-entropy alloy via ordered oxygen complexes. Nature 563, 546–550 (2018).
Huang, H. et al. Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater. 29, 1701678 (2017).
Senkov, O. N., Gorsse, S. & Miracle, D. B. High temperature strength of refractory complex concentrated alloys. Acta Mater. https://doi.org/10.1016/j.actamat.2019.06.032 (2019).
Zhang, Y. et al. Microstructures and properties of high-entropy alloys. Prog. Mater Sci. 61, 1–93 (2014).
Li, Z., Zhao, S., Ritchie, R. O. & Meyers, M. A. Mechanical properties of high-entropy alloys with emphasis on face-centered cubic alloys. Prog. Mater. Sci. https://doi.org/10.1016/j.pmatsci.2018.12.003 (2019).
Cantor, B. Multicomponent and high entropy alloys. Entropy https://doi.org/10.3390/e16094749 (2014).
Vincent, A. J. B. A Study of Three Multicomponent Alloys. BSc thesis, University of Sussex (1981).
Knight, P. Multicomponent Alloys. BSc thesis, University of Oxford (1995).
Argon, A. Strengthening Mechanisms in Crystal Plasticity (Oxford University Press, 2007).
Gypen, L. A. & Deruyttere, A. Thermally activated deformation in tantalum-base solid solutions. J. Less Common Met. https://doi.org/10.1016/0022-5088(82)90208-9 (1982).
Hutchinson, J. W. & Neale, K. W. Influence of strain-rate sensitivity on necking under uniaxial tension. Acta Metall. 25, 839–846 (1977).
Kato, H., Ozu, T., Hashimoto, S. & Miura, S. Cyclic stress-strain response of superelastic Cu-Al-Mn alloy single crystals. Mater. Sci. Eng. A 264, 245–253 (1999).
Lilensten, L. et al. On the heterogeneous nature of deformation in a strain-transformable beta metastable Ti-V-Cr-Al alloy. Acta Mater. https://doi.org/10.1016/j.actamat.2018.10.003 (2019).
Melander, A. Work hardening and softening in a dislocation glide plane with precipitates. Mater. Sci. Eng. 34, 235–240 (1978).
Olfe, J. & Neuhäuser, H. Dislocation groups, multipoles, and friction stresses in α-CuZn alloys. Phys. Status Solidi https://doi.org/10.1002/pssa.2211090115 (1988).
Li, Q. J., Sheng, H. & Ma, E. Strengthening in multi-principal element alloys with local-chemical-order roughened dislocation pathways. Nat. Commun. https://doi.org/10.1038/s41467-019-11464-7 (2019).
Takahashi, A. & Ghoniem, N. M. A computational method for dislocation-precipitate interaction. J. Mech. Phys. Solids https://doi.org/10.1016/j.jmps.2007.08.002 (2008).
Anderson, P. M., Hirth, J. P. & Lothe, J. Theory of Dislocations 3rd edn (Cambridge University Press, 2017).
Lai, M. J., Tasan, C. C. & Raabe, D. Deformation mechanism of ω-enriched Ti-Nb-based gum metal: dislocation channeling and deformation induced ω-β transformation. Acta Mater. 100, 290–300 (2015).
Chen, W. et al. Origin of the ductile-to-brittle transition of metastable β-titanium alloys: self-hardening of ω-precipitates. Acta Mater. https://doi.org/10.1016/j.actamat.2019.03.034 (2019).
Lilensten, L. et al. Study of a bcc multi-principal element alloy: tensile and simple shear properties and underlying deformation mechanisms. Acta Mater. https://doi.org/10.1016/j.actamat.2017.09.062 (2018).
Rao, S. I. et al. Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy. Acta Mater. https://doi.org/10.1016/j.actamat.2016.12.011 (2017).
Wang, Y., Li, J., Hamza, A. V. & Barbee, T. W. Ductile crystalline–amorphous nanolaminates. Proc. Natl Acad. Sci. USA 104, 11155–11160 (2007).
Gu, X. F., Furuhara, T. & Zhang, W. Z. PTCLab: free and open-source software for calculating phase transformation crystallography. J. Appl. Crystallogr. https://doi.org/10.1107/S1600576716006075 (2016).
Vítek, V. Intrinsic stacking faults in body-centred cubic crystals. Philos. Mag. 18, 773–786 (1968).
Park, S. C., Beckerman, L. P. & Reed-Hill, R. E. On the Portevin-Le Chatelier effect due to Snoek strain aging in the niobium oxygen system. Metall. Trans. A 14, 463–469 (1983).
Toby, B. H. & von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. https://doi.org/10.1107/S0021889813003531 (2013).
GOM Correlate (2018).
Acknowledgements
The TEM analyses were accomplished at the Materials Research Science and Engineering Center (MRSEC) shared experimental facilities at the Massachusetts Institute of Technology, financially supported by the National Science Foundation (NSF) under grant no. DMR-1419809. The synchrotron X-ray diffraction experiments were carried out on beamline 11ID-C at the Argon National Laboratory, Chicago, US (with the assistance of P. Gao and Y. Ren). S.J.K. and E.S.P. acknowledge financial support from the Creative Materials Discovery Program through the National Research Foundation (NRF) funded by the Ministry of Science and ICT, Korea (no. NRF-2019M3D1A1079215) and the Institute of Engineering Research at Seoul National University. T.F. acknowledges financial support from JSPS KAKENHI under grant no. JP18H05456 (Grant-in-Aid for Scientific Research on Innovative Areas 2018-2023). Y.J.Z. and T.F. thank K. Shinbo for technical support on APT measurement and G. Miyamoto for valuable discussions. S.L.W. and C.C.T. thank J. Li, D. B. Miracle, H. Oh, F. He, J. Kim, S.-S. Rui and M. Kim for their contributions.
Author information
Authors and Affiliations
Contributions
S.L.W. and C.C.T. conceptualized the project and designed the research; S.L.W. was the leading research scientist of this work; S.L.W., S.J.K. and E.S.P. fabricated the RHEA ingots; S.L.W. and S.J.K. conducted the thermodynamic computations; J.Y.K. and S.L.W. performed the in situ synchrotron X-ray diffraction experiments; S.L.W. and Y.Z. carried out the TEM characterizations; Y.J.Z. and T.F. performed the APT measurements; S.L.W. and C.C.T. analysed the data and wrote the paper and the supplementary information; and all authors discussed the results and approved the final version of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–17, Tables 1–3, Notes 1–4 and references.
Rights and permissions
About this article
Cite this article
Wei, S., Kim, S.J., Kang, J. et al. Natural-mixing guided design of refractory high-entropy alloys with as-cast tensile ductility. Nat. Mater. 19, 1175–1181 (2020). https://doi.org/10.1038/s41563-020-0750-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-020-0750-4
This article is cited by
-
Mining of lattice distortion, strength, and intrinsic ductility of refractory high entropy alloys
npj Computational Materials (2023)
-
Ultra-strong tungsten refractory high-entropy alloy via stepwise controllable coherent nanoprecipitations
Nature Communications (2023)
-
Tailoring planar slip to achieve pure metal-like ductility in body-centred-cubic multi-principal element alloys
Nature Materials (2023)
-
Toward the design of ultrahigh-entropy alloys via mining six million texts
Nature Communications (2023)
-
Heterogeneous Deformation Behaviors of an Inertia Friction Welded Ti2AlNb Joint: an In-situ Study
Acta Metallurgica Sinica (English Letters) (2023)