Tunable assembly of hybrid colloids induced by regioselective depletion

Abstract

Assembling colloidal particles using site-selective directional interactions into predetermined colloidal superlattices with desired properties is broadly sought after, but challenging to achieve. Herein, we exploit regioselective depletion interactions to engineer the directional bonding and assembly of non-spherical colloidal hybrid microparticles. We report that the crystallization of a binary colloidal mixture can be regulated by tuning the depletion conditions. Subsequently, we fabricate triblock biphasic colloids with controlled aspect ratios to achieve regioselective bonding. Without any surface treatment, these biphasic colloids assemble into various colloidal superstructures and superlattices featuring optimized pole-to-pole or centre-to-centre interactions. Additionally, we observe polymorphic crystallization, quantify the abundancy of each form using algorithms we developed and investigate the crystallization process in real time. We demonstrate selective control of attractive interactions between specific regions on an anisotropic colloid with no need of site-specific surface functionalization, leading to a general method for achieving colloidal structures with yet unforeseen arrangements and properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Selective crystallization of PS and TPM spheres.
Fig. 2: Schematic illustration of particle fabrication and representative SEM images.
Fig. 3: 1D assemblies induced by Pluronic F127.
Fig. 4: Polymorphism in 2D assemblies induced by pluronic F127.
Fig. 5: Tracking of the formation of polymorphs.
Fig. 6: Assemblies via centre-to-centre interactions.

Data availability

The experimental data that support the findings of this study are available within the article, its Supplementary Information files and from the authors upon reasonable request. Raw data that support the findings of this study are publicly available at https://nyu.box.com/v/NM-Regioselective-Depletion.

Code availability

The MATLAB scripts used for the polymorphism analysis are available at https://github.com/VRGParticles/Tunable-Assembly-of-Hybrid-Colloids-NatureMat-2020/ under the GNU GPL-3.0 licence.

References

  1. 1.

    Ravaine, S. & Duguet, E. Synthesis and assembly of patchy particles: recent progress and future prospects. Curr. Opin. Colloid Interface Sci. 30, 45–53 (2017).

    CAS  Google Scholar 

  2. 2.

    Zhang, J., Luijten, E. & Granick, S. Toward design rules of directional janus colloidal assembly. Annu. Rev. Phys. Chem. 66, 581–600 (2015).

    CAS  Google Scholar 

  3. 3.

    Yi, G. R., Pine, D. J. & Sacanna, S. Recent progress on patchy colloids and their self-assembly. J. Phys. Condens. Matter 25, 193101 (2013).

    Google Scholar 

  4. 4.

    Hynninen, A. P., Thijssen, J. H., Vermolen, E. C., Dijkstra, M. & van Blaaderen, A. Self-assembly route for photonic crystals with a bandgap in the visible region. Nat. Mater. 6, 202–205 (2007).

    CAS  Google Scholar 

  5. 5.

    Maldovan, M. & Thomas, E. L. Diamond-structured photonic crystals. Nat. Mater. 3, 593–600 (2004).

    CAS  Google Scholar 

  6. 6.

    Duguet, E., Hubert, C., Chomette, C., Perro, A. & Ravaine, S. Patchy colloidal particles for programmed self-assembly. C. R. Chim. 19, 173–182 (2016).

    CAS  Google Scholar 

  7. 7.

    Cademartiri, L. & Bishop, K. J. Programmable self-assembly. Nat. Mater. 14, 2–9 (2015).

    CAS  Google Scholar 

  8. 8.

    Elacqua, E., Zheng, X., Shillingford, C., Liu, M. & Weck, M. Molecular recognition in the colloidal world. Acc. Chem. Res. 50, 2756–2766 (2017).

    CAS  Google Scholar 

  9. 9.

    Gerth, M. & Voets, I. K. Molecular control over colloidal assembly. Chem. Commun. 53, 4414–4428 (2017).

    CAS  Google Scholar 

  10. 10.

    Nguyen, T. A., Newton, A., Kraft, D. J., Bolhuis, P. G. & Schall, P. Tuning patchy bonds induced by critical casimir forces. Materials 10, 1265 (2017).

    Google Scholar 

  11. 11.

    Chen, G. et al. Regioselective surface encoding of nanoparticles for programmable self-assembly. Nat. Mater. 18, 169–174 (2019).

    CAS  Google Scholar 

  12. 12.

    Petukhov, A. V., Tuinier, R. & Vroege, G. J. Entropic patchiness: effects of colloid shape and depletion. Curr. Opin. Colloid Interface Sci. 30, 54–61 (2017).

    CAS  Google Scholar 

  13. 13.

    van Anders, G., Ahmed, N. K., Smith, R., Engel, M. & Glotzer, S. C. Entropically patchy particles: engineering valence through shape entropy. ACS Nano 8, 931–940 (2014).

    Google Scholar 

  14. 14.

    Sacanna, S., Pine, D. J. & Yi, G.-R. Engineering shape: the novel geometries of colloidal self-assembly. Soft Matter 9, 8096–8106 (2013).

    CAS  Google Scholar 

  15. 15.

    Sacanna, S. & Pine, D. J. Shape-anisotropic colloids: building blocks for complex assemblies. Curr. Opin. Colloid Interface Sci. 16, 96–105 (2011).

    CAS  Google Scholar 

  16. 16.

    Wang, Y. F. et al. Colloids with valence and specific directional bonding. Nature 491, 51–55 (2012).

    CAS  Google Scholar 

  17. 17.

    Chen, Q., Bae, S. C. & Granick, S. Directed self-assembly of a colloidal kagome lattice. Nature 469, 381–384 (2011).

    CAS  Google Scholar 

  18. 18.

    Gong, Z., Hueckel, T., Yi, G. R. & Sacanna, S. Patchy particles made by colloidal fusion. Nature 550, 234–238 (2017).

    Google Scholar 

  19. 19.

    Li, Z. W., Zhu, Y. L., Lu, Z. Y. & Sun, Z. Y. General patchy ellipsoidal particle model for the aggregation behaviors of shape- and/or surface-anisotropic building blocks. Soft Matter 14, 7625–7633 (2018).

    CAS  Google Scholar 

  20. 20.

    Morphew, D., Shaw, J., Avins, C. & Chakrabarti, D. Programming hierarchical self-assembly of patchy particles into colloidal crystals via colloidal molecules. ACS Nano 12, 2355–2364 (2018).

    CAS  Google Scholar 

  21. 21.

    Du, C. X., van Anders, G., Newman, R. S. & Glotzer, S. C. Shape-driven solid-solid transitions in colloids. Proc. Natl Acad. Sci. USA 114, E3892–E3899 (2017).

    CAS  Google Scholar 

  22. 22.

    Wang, Y., Jenkins, I. C., McGinley, J. T., Sinno, T. & Crocker, J. C. Colloidal crystals with diamond symmetry at optical lengthscales. Nat. Commun. 8, 14173 (2017).

    CAS  Google Scholar 

  23. 23.

    Ducrot, E., He, M., Yi, G. R. & Pine, D. J. Colloidal alloys with preassembled clusters and spheres. Nat. Mater. 16, 652–657 (2017).

    CAS  Google Scholar 

  24. 24.

    Rossi, L. et al. Cubic crystals from cubic colloids. Soft Matter 7, 4139–4142 (2011).

    CAS  Google Scholar 

  25. 25.

    Lekkerkerker, H. N. W. & Tuinier, R. Colloids and the Depletion Interaction (Springer, 2011).

  26. 26.

    Asakura, S. & Oosawa, F. Interaction between particles suspended in solutions of macromolecules. J. Polym. Sci. 33, 183–192 (1958).

    CAS  Google Scholar 

  27. 27.

    Semenov, A. N. & Shvets, A. A. Theory of colloid depletion stabilization by unattached and adsorbed polymers. Soft Matter 11, 8863–8878 (2015).

    CAS  Google Scholar 

  28. 28.

    Barnes, T. J. & Prestidge, C. A. PEO-PPO-PEO block copolymers at the emulsion droplet-water interface. Langmuir 16, 4116–4121 (2000).

    CAS  Google Scholar 

  29. 29.

    Kraft, D. J. et al. Surface roughness directed self-assembly of patchy particles into colloidal micelles. Proc. Natl Acad. Sci. USA 109, 10787–10792 (2012).

    CAS  Google Scholar 

  30. 30.

    Zhao, K. & Mason, T. G. Directing colloidal self-assembly through roughness-controlled depletion attractions. Phys. Rev. Lett. 99, 268301 (2007).

    Google Scholar 

  31. 31.

    Sharma, K. P., Aswal, V. K. & Kumaraswamy, G. Adsorption of nonionic surfactant on silica nanoparticles: structure and resultant interparticle interactions. J. Phys. Chem. B 114, 10986–10994 (2010).

    CAS  Google Scholar 

  32. 32.

    Feng, L., Laderman, B., Sacanna, S. & Chaikin, P. Re-entrant solidification in polymer-colloid mixtures as a consequence of competing entropic and enthalpic attractions. Nat. Mater. 14, 61–65 (2015).

    CAS  Google Scholar 

  33. 33.

    Mckee, C. T. & Walz, J. Y. Interaction forces between colloidal particles in a solution of like-charged, adsorbing nanoparticles. J. Colloid Interface Sci. 365, 72–80 (2012).

    CAS  Google Scholar 

  34. 34.

    Zheng, X., Liu, M., He, M., Pine, D. J. & Weck, M. Shape-shifting patchy particles. Angew. Chem. Int. Ed. 56, 5507–5511 (2017).

    CAS  Google Scholar 

  35. 35.

    Manoharan, V. N., Elsesser, M. T. & Pine, D. J. Dense packing and symmetry in small clusters of microspheres. Science 301, 483–487 (2003).

    CAS  Google Scholar 

  36. 36.

    Wang, L., Lu, J. & Liu, B. Metastable self‐assembly of theta‐shaped colloids and twinning of their crystal phases. Angew. Chem. Int. Ed. 58, 1–7 (2019).

    CAS  Google Scholar 

  37. 37.

    Oh, J. S., Lee, S., Glotzer, S. C., Yi, G. R. & Pine, D. J. Colloidal fibers and rings by cooperative assembly. Nat. Commun. 10, 3936 (2019).

    Google Scholar 

  38. 38.

    Sukenik, S., Sapir, L. & Harries, D. Balance of enthalpy and entropy in depletion forces. Curr. Opin. Colloid Interface Sci. 18, 495–501 (2013).

    CAS  Google Scholar 

  39. 39.

    Dushkin, C. D., Yoshimura, H. & Nagayama, K. Nucleation and growth of two-dimensional colloidal crystals. Chem. Phys. Lett. 204, 455–460 (1993).

    CAS  Google Scholar 

  40. 40.

    Kang, L., Gibaud, T., Dogic, Z. & Lubensky, T. C. Entropic forces stabilize diverse emergent structures in colloidal membranes. Soft Matter 12, 386–401 (2016).

    CAS  Google Scholar 

  41. 41.

    Barry, E. & Dogic, Z. Entropy driven self-assembly of nonamphiphilic colloidal membranes. Proc. Natl Acad. Sci. USA 107, 10348–10353 (2010).

    CAS  Google Scholar 

  42. 42.

    Xie, Y. et al. Liquid crystal self-assembly of upconversion nanorods enriched by depletion forces for mesostructured material preparation. Nanoscale 10, 4218–4227 (2018).

    CAS  Google Scholar 

  43. 43.

    Baranov, D. et al. Assembly of colloidal semiconductor nanorods in solution by depletion attraction. Nano Lett. 10, 743–749 (2010).

    CAS  Google Scholar 

  44. 44.

    Liu, G. R., Gou, R. J., Li, H. Z. & Zhang, C. Y. Polymorphism of energetic materials: a comprehensive study of molecular conformers, crystal packing, and the dominance of their energetics in governing the most stable polymorph. Cryst. Growth Des. 18, 4174–4186 (2018).

    CAS  Google Scholar 

  45. 45.

    Patra, N. & Tkachenko, A. V. Programmable self-assembly of diamond polymorphs from chromatic patchy particles. Phys. Rev. E. 98, 032611 (2018).

    CAS  Google Scholar 

  46. 46.

    Zhao, K. & Mason, T. G. Shape-designed frustration by local polymorphism in a near-equilibrium colloidal glass. Proc. Natl Acad. Sci. USA 112, 12063–12068 (2015).

    CAS  Google Scholar 

  47. 47.

    Reinhart, W. F. & Panagiotopoulos, A. Z. Equilibrium crystal phases of triblock Janus colloids. J. Chem. Phys. 145, 094505 (2016).

    Google Scholar 

  48. 48.

    Kim, J. et al. Polymorphic assembly from beveled gold triangular nanoprisms. Nano Lett. 17, 3270–3275 (2017).

    CAS  Google Scholar 

  49. 49.

    Karas, A. S., Glaser, J. & Glotzer, S. C. Using depletion to control colloidal crystal assemblies of hard cuboctahedra. Soft Matter 12, 5199–5204 (2016).

    CAS  Google Scholar 

  50. 50.

    Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported through funding from Department of Energy under grant award no. DE-SC0007991. Partial support for the salary of X.Z. from the Donors of the American Chemical Society Petroleum Research Fund under grant number 56280-ND7 is acknowledged. We acknowledge M.D. Ward, D.G. Grier, J. Oh, Z. Gong, M. He, C. Shillingford and R. Rahman for helpful discussions. The Zeiss Merlin field emission SEM was acquired through the support of the NSF under award no. DMR-0923251.

Author information

Affiliations

Authors

Contributions

M.L., X.Z., D.J.P. and M.W. conceived the project. M.L. and X.Z. developed the particle fabrication methods. M.L. performed experiments. V.G. developed the algorithms for image analysis. M.L., X.Z., D.J.P. and M.W analysed the experimental results. M.L., X.Z., V.G., D.J.P. and M.W. discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Marcus Weck.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Video Legends 1–5, Notes 1–3, Figs. 1–15, Tables 1–3 and references.

Supplementary Video 1

Large area observation of polymorphic formation of the brick-wall and herringbone patterns

Supplementary Video 2

Seed 1 formation and growth

Supplementary Video 3

Seed 2 and seed 3 formation and growth

Supplementary Video 4

Super seed formation and growth

Supplementary Video 5

Assembly process of Colloidal membranes

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Zheng, X., Grebe, V. et al. Tunable assembly of hybrid colloids induced by regioselective depletion. Nat. Mater. (2020). https://doi.org/10.1038/s41563-020-0744-2

Download citation