Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures

Abstract

A fundamental understanding of hot-carrier dynamics in photo-excited metal nanostructures is needed to unlock their potential for photodetection and photocatalysis. Despite numerous studies on the ultrafast dynamics of hot electrons, so far, the temporal evolution of hot holes in metal–semiconductor heterostructures remains unknown. Here, we report ultrafast (t < 200 fs) hot-hole injection from Au nanoparticles into the valence band of p-type GaN. The removal of hot holes from below the Au Fermi level is observed to substantially alter the thermalization dynamics of hot electrons, reducing the peak electronic temperature and the electron–phonon coupling time of the Au nanoparticles. First-principles calculations reveal that hot-hole injection modifies the relaxation dynamics of hot electrons in Au nanoparticles by modulating the electronic structure of the metal on timescales commensurate with electron–electron scattering. These results advance our understanding of hot-hole dynamics in metal–semiconductor heterostructures and offer additional strategies for manipulating the dynamics of hot carriers on ultrafast timescales.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Optical excitation of hot carriers in metal nanostructures.
Fig. 2: Infrared transient absorption spectroscopy of hot-hole dynamics in Au/p-GaN heterostructures.
Fig. 3: Influence of ultrafast hot-hole collection on the dynamics of hot electrons in Au nanoparticles.
Fig. 4: Influence of incident pump wavelength on hot-hole injection at the Au/p-GaN interface.
Fig. 5: Comparison of ultrafast hot-carrier dynamics in Au nanoparticles supported on p-GaN and Al2O3 substrates.

Data availability

The datasets generated and analysed during the study are available from the corresponding authors upon request.

References

  1. 1.

    Clavero, C. Plasmon-induced hot-electron generation at nanoparticle/metal-oxide interfaces for photovoltaic and photocatalytic devices. Nat. Photon. 8, 95–103 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    Brongersma, M. L., Halas, N. J. & Nordlander, P. Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10, 25–34 (2015).

    CAS  Article  Google Scholar 

  3. 3.

    Christopher, P. & Moskovits, M. Hot charge carrier transmission from plasmonic nanostructures. Annu. Rev. Phys. Chem. 68, 379–398 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Aslam, U., Rao, V. G., Chavez, S. & Linic, S. Catalytic conversion of solar to chemical energy on plasmonic metal nanostructures. Nat. Catal. 1, 656–665 (2018).

    Article  Google Scholar 

  5. 5.

    Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 10, 911–921 (2011).

    CAS  Article  Google Scholar 

  6. 6.

    Knight, M. W., Sobhani, H., Nordlander, P. & Halas, N. J. Photodetection with active optical antennas. Science 332, 702–704 (2011).

    CAS  Article  Google Scholar 

  7. 7.

    Zheng, B. Y. et al. Distinguishing between plasmon-induced and photoexcited carriers in a device geometry. Nat. Commun. 6, 7797 (2015).

    Article  Google Scholar 

  8. 8.

    Li, W. et al. Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials. Nat. Commun. 6, 8379 (2015).

    CAS  Article  Google Scholar 

  9. 9.

    Tagliabue, G. et al. Quantifying the role of surface plasmon excitation and hot carrier transport in plasmonic devices. Nat. Commun. 9, 3394 (2018).

    Article  Google Scholar 

  10. 10.

    Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 8, 247–251 (2013).

    CAS  Article  Google Scholar 

  11. 11.

    Mubeen, S., Lee, J., Liu, D., Stucky, G. D. & Moskovits, M. Panchromatic photoproduction of H2 with surface plasmons. Nano Lett. 15, 2132–2136 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    Zhou, L. et al. Quantifying hot carrier and thermal contributions in plasmonic photocatalysis. Science 362, 69–72 (2018).

    CAS  Article  Google Scholar 

  13. 13.

    Christopher, P., Xin, H. & Linic, S. Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat. Chem. 3, 467–472 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    Link, S. & El-Sayed, M. A. Optical properties and ultrafast dynamics of metallic nanoparticles. Annu. Rev. Phys. Chem. 54, 331–366 (2003).

    CAS  Article  Google Scholar 

  15. 15.

    Hartland, G. V. Optical studies of dynamics in noble metal nanostructures. Chem. Rev. 111, 3858–3887 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    Hodak, J. H., Martini, I. & Hartland, G. V. Spectroscopy and dynamics of nanometer-sized noble metal nanoparticles. J. Phys. Chem. B 102, 6958–6967 (1998).

    CAS  Article  Google Scholar 

  17. 17.

    Hodak, J. H., Henglein, A. & Hartland, G. V. Electron-phonon coupling dynamics in very small (between 2 and 8 nm diameter) Au nanoparticles. J. Chem. Phys. 112, 5942–5947 (2000).

    CAS  Article  Google Scholar 

  18. 18.

    Link, S. & El-Sayed, M. A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. J. Phys. Chem. B 103, 8410–8426 (1999).

    CAS  Article  Google Scholar 

  19. 19.

    Wu, K., Rodriguez-Cordoba, W. E., Yang, Y. & Lian, T. Plasmon-induced hot electron transfer from the Au tip to CdS rod in CdS-Au nanoheterostructures. Nano Lett. 13, 5255–5263 (2013).

    CAS  Article  Google Scholar 

  20. 20.

    Wu, K., Chen, J., McBride, J. R. & Lian, T. Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349, 632–635 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Brown, A. M. et al. Experimental and ab initio ultrafast carrier dynamics in plasmonic nanoparticles. Phys. Rev. Lett. 118, 087401 (2017).

    Article  Google Scholar 

  22. 22.

    Furube, A., Du, L., Hara, K., Katoh, R. & Tachiya, M. Ultrafast plasmon-induced electron transfer from gold nanodots into TiO2 nanoparticles. J. Am. Chem. Soc. 129, 14852–14853 (2007).

    CAS  Article  Google Scholar 

  23. 23.

    Ratchford, D. C., Dunkerlberger, A. D., Vurgaftman, I., Owrutsky, J. C. & Pehrsson, P. E. Quantification of efficient plasmonic hot-electron injection in gold nanoparticle-TiO2 flims. Nano Lett. 17, 6047–6055 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Harutyunyan, H. et al. Anomalous ultrafast dynamics of hot plasmonic electrons in nanostructures with hot spots. Nat. Nanotechnol. 10, 770–774 (2015).

    CAS  Article  Google Scholar 

  25. 25.

    Tan, S. et al. Plasmonic coupling at a metal/semiconductor interface. Nat. Photon. 11, 806–812 (2018).

    Article  Google Scholar 

  26. 26.

    Bauer, M., Marienfeld, A. & Aeschlimann, M. Hot electron lifetimes in metals probed by time-resolved two-photon photoemission. Prog. Surf. Sci. 90, 319–376 (2015).

    CAS  Article  Google Scholar 

  27. 27.

    Brown, A. M., Sundararaman, R., Narang, P., Goddard, W. A. III & Atwater, H. A. Nonradiative plasmon decay and hot carrier dynamics: effects of phonons, surfaces, and geometry. ACS Nano 10, 957–966 (2016).

    CAS  Article  Google Scholar 

  28. 28.

    Sundararaman, R., Narang, P., Jermyn, A. S., Goddard, W. A. III & Atwater, H. A. Theoretical predictions for hot-carrier generation from surface plasmon decay. Nat. Commun. 5, 5788 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Brown, A. M., Sundararaman, R., Narang, P., Goddard, W. A. III & Atwater, H. A. Ab initio phonon coupling and optical response of hot electrons in plasmonic metals. Phys. Rev. B 94, 075120 (2016).

    Article  Google Scholar 

  30. 30.

    DuChene, J. S., Tagliabue, G., Welch, A. J., Cheng, W.-H. & Atwater, H. A. Hot hole collection and photoelectrochemical CO2 reduction with plasmonic Au/p-GaN photocathodes. Nano Lett. 18, 2545–1550 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Matsui, T. et al. Highly stable plasmon induced hot hole transfer into silicon via a SrTiO3 passivation interface. Adv. Funct. Mater. 28, 1705829 (2018).

    Article  Google Scholar 

  32. 32.

    Lian, Z. et al. Near infrared light induced plasmonic hot hole transfer at a nano-heterointerface. Nat. Commun. 9, 2314 (2018).

    Article  Google Scholar 

  33. 33.

    Sá, J. et al. Direct observation of charge separation on Au localized surface plasmons. Energy Environ. Sci. 6, 3584–3588 (2013).

    Article  Google Scholar 

  34. 34.

    Ye, H., Wicks, G. W. & Fauchet, P. M. Hot hole relaxation dynamics in p-GaN. Appl. Phys. Lett. 77, 1185 (2000).

    CAS  Article  Google Scholar 

  35. 35.

    Sundararaman, R. et al. JDFTx: software for joint density-functional theory. SoftwareX 6, 278–284 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work performed by the Joint Center for Artificial Photosynthesis, a DOE Energy Innovation Hub, supported through the Office of Science of the US Department of Energy under award no. DE-SC0004993. A portion of the ultrafast spectroscopy work was performed at the Center for Nanoscale Materials, a US Department of Energy Office of Science User Facility, and supported by the US Department of Energy, Office of Science, under contract no. DE-AC02-06CH11357. G.T. acknowledges support from the Swiss National Science Foundation through the Early Postdoc.Mobility Fellowship, grant no. P2EZP2_159101 and the Advanced Mobility Fellowship, grant no. P300P2_171417. We also thank M. V. Pavliuk for assistance in conducting ultrafast transient absorption spectroscopy measurements from planar Au films on p-GaN substrates.

Author information

Affiliations

Authors

Contributions

J.S.D., G.T. and H.A.A. conceived the idea, designed the experiments, analysed data and wrote the manuscript with contributions from all authors. M.A., Y.H. and J.S. performed infrared transient absorption spectroscopy experiments. M.A., K.Z., S.E.C. and D.J.G. performed visible transient absorption spectroscopy experiments. A.H. and R.S. performed ab initio theory calculations. J.S.D. and G.T. fabricated and characterized materials. W.-H.C. acquired absorption spectra of materials. H.A.A. supervised the project. All authors have given approval to the final version of the manuscript.

Corresponding authors

Correspondence to Jacinto Sá or Harry A. Atwater.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Transient infrared absorption spectroscopy of Au/p-GaN heterostructures.

Full infrared probe spectrum (λprobe = 1850–2250 cm−1) obtained from Au/p-GaN upon 530 nm pump pulse at an incident power of 400 μW. The plot shown in Fig. 2b shows the temporal rise and decay taken at 2060 cm−1probe = 4.85 μm).

Extended Data Fig. 2 Power-dependent transient infrared absorption spectroscopy of Au/p-GaN heterostructures.

Ultrafast transient rise and decay probed at 2060 cm−1probe = 4.85 μm) obtained from Au/p-GaN upon 530 nm pump pulse at several different incident powers.

Extended Data Fig. 3 Transient infrared absorption spectroscopy of Au/ZrO2 heterostructures.

a, Full infrared probe spectrum (λprobe = 1900–2300 cm−1) obtained from Au/ZrO2 upon 530 nm pump pulse at an incident power of 500 μW. b, Ultrafast transient rise and decay probed at 2060 cm−1probe = 4.85 μm) obtained from Au/p-GaN (black points), bare p-GaN (open circles), and Au/ZrO2 (grey points) upon 530 nm pump pulse at an incident power of 500 μW (Au/p-GaN and Au/ZrO2) and 750 μW (bare p-GaN). The red line shows a fit to the experimental Au/p-GaN data, which exhibits an instrument-limited rise time of less than 200 fs. No signal was obtained from either bare p-GaN or Au/ZrO2 heterostructures.

Extended Data Fig. 4 Power-dependent pump-probe studies of visible-light transient absorption spectroscopy from Au/p-GaN heterostructures.

a, Power-dependent dynamics of the transient bleach at 560 nm from 200 μW to 500 μW pump power. b, Power-dependent differential transient absorption spectra (λprobe = 450 – 750 nm) from Au/p-GaN heterostructures cut at 350 fs.

Extended Data Fig. 5 Power-dependent pump-probe studies of visible-light transient absorption spectroscopy from Au/Al2O3 heterostructures.

a, Power-dependent dynamics of the transient bleach at 550 nm from 100 μW to 400 μW pump power. b, Power-dependent differential transient absorption spectra (λprobe = 450 – 750 nm) from Au/p-GaN heterostructures cut at 350 fs.

Extended Data Fig. 6 Power-dependent pump-probe studies of visible-light transient absorption spectroscopy from Au/SiO2 heterostructures.

a, Power-dependent dynamics of the transient bleach at 586 nm from 100 μW to 400 μW pump power. b, Power-dependent differential transient absorption spectra (λprobe = 450 – 750 nm) from Au/SiO2 heterostructures cut at 370 fs.

Supplementary information

Supplementary Information

Supplementary Figs. 1–5 and discussion associated with Supplementary Fig. 5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tagliabue, G., DuChene, J.S., Abdellah, M. et al. Ultrafast hot-hole injection modifies hot-electron dynamics in Au/p-GaN heterostructures. Nat. Mater. 19, 1312–1318 (2020). https://doi.org/10.1038/s41563-020-0737-1

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing