Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions


The possibility of confining interlayer excitons in interfacial moiré patterns has recently gained attention as a strategy to form ordered arrays of zero-dimensional quantum emitters and topological superlattices in transition metal dichalcogenide heterostructures. Strain is expected to play an important role in the modulation of the moiré potential landscape, tuning the array of quantum dot-like zero-dimensional traps into parallel stripes of one-dimensional quantum wires. Here, we present real-space imaging of unstrained zero-dimensional and strain-induced one-dimensional moiré patterns along with photoluminescence measurements of the corresponding excitonic emission from WSe2/MoSe2 heterobilayers. Whereas excitons in zero-dimensional moiré traps display quantum emitter-like sharp photoluminescence peaks with circular polarization, the photoluminescence emission from excitons in one-dimensional moiré potentials shows linear polarization and two orders of magnitude higher intensity. These results establish strain engineering as an effective method to tailor moiré potentials and their optoelectronic response on demand.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Hexagonal vs quasi-1D moiré patterns and the associated PL spectra.
Fig. 2: Transformation of moiré patterns and strain analysis.
Fig. 3: Direct correlation between 1D moiré patterns and linearly polarized PL emission.
Fig. 4: Evolution of PL peak shape with exciton density for interlayer excitons in the 1D moiré potential.

Data availability

The data represented in Figs. 14 are provided with the article source data. All data that support the results in this article are available from the corresponding author upon reasonable request. Source data are provided with this paper.

Change history

  • 20 July 2020

    An amendment to this paper has been published and can be accessed via a link at the top of the paper.


  1. 1.

    Yao, W., Xu, X., Liu, G.-B., Tang, J. & Yu, H. Moiré excitons: from programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

    Google Scholar 

  2. 2.

    Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  Google Scholar 

  3. 3.

    Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS  Google Scholar 

  4. 4.

    Tong, Q. et al. Topological mosaics in moiré superlattices of van der Waals heterobilayers. Nat. Phys. 13, 356–362 (2017).

    CAS  Google Scholar 

  5. 5.

    Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

    CAS  Google Scholar 

  6. 6.

    Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    CAS  Google Scholar 

  7. 7.

    Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    CAS  Google Scholar 

  8. 8.

    Yuan, L. et al. Twist-angle-dependent interlayer exciton diffusion in WS2–WSe2 heterobilayers. Nat. Mater. 19, 617–623 (2020).

    CAS  Google Scholar 

  9. 9.

    Li, W., Lu, X., Dubey, S., Devenica, L. & Srivastava, A. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 19, 624–629 (2020).

    CAS  Google Scholar 

  10. 10.

    Brotons-Gisbert, M. et al. Spin–layer locking of interlayer excitons trapped in moiré potentials. Nat. Mater. 19, 630–636 (2020).

    CAS  Google Scholar 

  11. 11.

    Wu, F., Lovorn, T. & Macdonald, A. H. Topological exciton bands in moiré heterojunctions. Phys. Rev. Lett. 118, 147401 (2017).

    Google Scholar 

  12. 12.

    Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    CAS  Google Scholar 

  13. 13.

    Wang, J. et al. Optical generation of high carrier densities in 2D semiconductor heterobilayers. Sci. Adv. 5, eaax0145 (2019).

    CAS  Google Scholar 

  14. 14.

    Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).

    CAS  Google Scholar 

  15. 15.

    Li, Y. et al. Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. Nano Lett. 13, 3329–3333 (2013).

    CAS  Google Scholar 

  16. 16.

    Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    CAS  Google Scholar 

  17. 17.

    Jauregui, L. A. et al. Electrical control of interlayer exciton dynamics in atomically thin heterostructures. Science 366, 870–875 (2019).

    CAS  Google Scholar 

  18. 18.

    Wu, W. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).

    CAS  Google Scholar 

  19. 19.

    Lee, J. H. et al. Reliable piezoelectricity in bilayer WSe2 for piezoelectric nanogenerators. Adv. Mater. 29, 1–7 (2017).

    Google Scholar 

  20. 20.

    Mcgilly, L. J. et al. Visualization of moiré superlattices. Nat. Nanotechnol. (in the press).

  21. 21.

    Liu, G. et al. Electronic structures and theoretical modelling of two-dimensional group-VIB transition metal dichalcogenides. Chem. Soc. Rev. 44, 2643–2663 (2014).

    Google Scholar 

  22. 22.

    Ajayi, O. et al. Approaching the intrinsic photoluminescence linewidth in transition metal dichalcogenide monolayers. 2D Mater. 4, 31011 (2017).

    Google Scholar 

  23. 23.

    Raja, A. et al. Dielectric disorder in two-dimensional materials. Nat. Nanotechnol. 14, 832–837 (2019).

    CAS  Google Scholar 

  24. 24.

    Yu, H., Liu, G.-B., Gong, P., Xu, X. & Yao, W. Dirac cones and Dirac saddle points of bright excitons in monolayer transition metal dichalcogenides. Nat. Commun. 5, 3876 (2014).

    CAS  Google Scholar 

  25. 25.

    Yu, T. & Wu, M. W. Valley depolarization due to intervalley and intravalley electron-hole exchange interactions in monolayer MoS2. Phys. Rev. B 89, 205303 (2014).

    Google Scholar 

  26. 26.

    Glazov, M. M. et al. Exciton fine structure and spin decoherence in monolayers of transition metal dichalcogenides. Phys. Rev. B 89, 201302 (2014).

    Google Scholar 

  27. 27.

    Wang, J., Gudiksen, M. S., Duan, X., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).

    CAS  Google Scholar 

  28. 28.

    Lefebvre, J., Fraser, J. M., Finnie, P. & Homma, Y. Photoluminescence from an individual single-walled carbon nanotube. Phys. Rev. B 69, 75403 (2004).

    Google Scholar 

  29. 29.

    Gillen, R. & Maultzsch, J. Interlayer excitons in MoSe2/WSe2 heterostructures from first principles. Phys. Rev. B 97, 1–7 (2018).

    Google Scholar 

  30. 30.

    Okada, M. et al. Direct and indirect interlayer excitons in a van der Waals heterostructure of hBN/WS2/MoS2/hBN. ACS Nano 12, 2498–2505 (2018).

    CAS  Google Scholar 

  31. 31.

    Liu, F., Li, Q. & Zhu, X. Direct determination of momentum-resolved electron transfer in the photoexcited van der Waals heterobilayer WS2/MoS2. Phys. Rev. B 101, 201405(R) (2020).

    Google Scholar 

  32. 32.

    Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    CAS  Google Scholar 

  33. 33.

    Bi, Z., Yuan, N. F. Q. & Fu, L. Designing flat bands by strain. Phys. Rev. B 100, 35448 (2019).

    CAS  Google Scholar 

  34. 34.

    Ni, Z. H. et al. Uniaxial strain on graphene: Raman spectroscopy study and band-gap opening. ACS Nano 2, 2301–2305 (2008).

    CAS  Google Scholar 

  35. 35.

    Gui, G., Li, J. & Zhong, J. Band structure engineering of graphene by strain: first-principles calculations. Phys. Rev. B 78, 75435 (2008).

    Google Scholar 

  36. 36.

    Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps, topological insulator state and zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6, 30–33 (2009).

    Google Scholar 

  37. 37.

    Castellanos-Gomez, A. et al. Local strain engineering in atomically thin MoS2. Nano Lett. 13, 5361–5366 (2013).

    CAS  Google Scholar 

  38. 38.

    He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 13, 2931–2936 (2013).

    CAS  Google Scholar 

  39. 39.

    Kou, L., Frauenheim, T. & Chen, C. Nanoscale multilayer transition-metal dichalcogenide heterostructures: band gap modulation by interfacial strain and spontaneous polarization. J. Phys. Chem. Lett. 4, 1730–1736 (2013).

    CAS  Google Scholar 

  40. 40.

    Edelberg, D. et al. Approaching the intrinsic limit in transition metal diselenides via point defect control. Nano Lett. 19, 4371–4379 (2019).

    CAS  Google Scholar 

Download references


The PFM imaging experiments and PL measurements were supported by the Center for Programmable Quantum Materials, an Energy Frontier Research Center funded by the US Department of Energy through grant DE-SC0019443. Sample preparation and SHG characterization were supported by the Center for Precision Assembly of Superstratic and Superatomic Solids, a Materials Science and Engineering Research Center (MRSEC) through National Science Foundation (NSF) grant DMR-1420634. The power-dependent measurements on many-body effects (Supplementary Figs. 1214) were supported by the NSF through grant DMR-1809680. Building of the confocal PL spectrometer was supported in part by the Office of Naval Research under grant N00014-16-1-2921. D.H. acknowledges the generous support from the Simons Foundation (579913).

Author information




X.Y.Z., Y.B. and L.Z. conceived this work. Y.B., L.Z., J.W. and W.W. performed the experiments. L.M., J.A., F.L., P.R. and N.R.F. participated in various stages of sample preparation and characterization. D.H. and C.F.B.L. carried out strain field analysis, with supervision from D.N.B. X.C.Y. and W.Y. carried out model Hamiltonian analysis. X.Y.Z. supervised the project, with inputs from A.P., J.H. and X.X. X.Y.Z, W.Y., X.X., J.H. and A.P. participated in the interpretation of experimental findings. X.Y.Z. and Y.B. wrote the manuscript, with inputs from all coauthors. All authors read and commented on the manuscript.

Corresponding authors

Correspondence to Abhay N. Pasupathy or X.-Y. Zhu.

Ethics declarations

Competing interests

All authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Text 1–3 and Figs. S1–S24.

Source data

Source Data Fig. 1

Experimental data points of PL spectra shown in Fig. 1e.

Source Data Fig. 2

Fitting data points of the strain field shown in Fig. 2k–l.

Source Data Fig. 3

Experimental data points of PL spectra shown in Fig. 3a–e, experimental and fitting data points of linear polarization responses shown in Fig. 3f–j.

Source Data Fig. 4

Experimental and fitting data points shown in Fig. 4a–c.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bai, Y., Zhou, L., Wang, J. et al. Excitons in strain-induced one-dimensional moiré potentials at transition metal dichalcogenide heterojunctions. Nat. Mater. (2020). https://doi.org/10.1038/s41563-020-0730-8

Download citation