Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A poly(thymine)–melamine duplex for the assembly of DNA nanomaterials

Abstract

The diversity of DNA duplex structures is limited by a binary pair of hydrogen-bonded motifs. Here we show that poly(thymine) self-associates into antiparallel, right-handed duplexes in the presence of melamine, a small molecule that presents a triplicate set of the hydrogen-bonding face of adenine. X-ray crystallography shows that in the complex two poly(thymine) strands wrap around a helical column of melamine, which hydrogen bonds to thymine residues on two of its three faces. The mechanical strength of the thymine–melamine–thymine triplet surpasses that of adenine–thymine base pairs, which enables a sensitive detection of melamine at 3 pM. The poly(thymine)–melamine duplex is orthogonal to native DNA base pairing and can undergo strand displacement without the need for overhangs. Its incorporation into two-dimensional grids and hybrid DNA–small-molecule polymers highlights the poly(thymine)–melamine duplex as an additional tool for DNA nanotechnology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Potential hydrogen-bonding complexes between MA and T.
Fig. 2: Analysis of the poly(T)–MA interaction by native PAGE.
Fig. 3: Crystallographic study of the T6–MA complex.
Fig. 4: Mechanical properties of poly(T)–MA duplexes.
Fig. 5: Mechanochemical sensing of MA using poly(T) templates.
Fig. 6: Applying poly(T)–MA to programme the self-assembly of DNA nanostructures.

Similar content being viewed by others

Data availability

Crystallography data (Fig. 3) are available from the Protein Data Bank (https://www.rcsb.org/) with access code 6WK7. The source data related to Figs. 4 and 5 are available upon request from the corresponding authors. All other data in the paper are provided as Source data.

References

  1. Frank-Kamenetskii, M. D. & Mirkin, S. M. Triplex DNA structures. Annu. Rev. Biochem. 64, 65–95 (1995).

    CAS  Google Scholar 

  2. Rhodes, D. & Lipps, H. J. G-quadruplexes and their regulatory roles in biology. Nucleic Acids Res. 43, 8627–8637 (2015).

    CAS  Google Scholar 

  3. Abou Assi, H., Garavís, M., González, C. & Damha, M. J. i-motif DNA: structural features and significance to cell biology. Nucleic Acids Res. 46, 8038–8056 (2018).

    Google Scholar 

  4. Debnath, M., Fatma, K. & Dash, J. Chemical regulation of DNA i-motifs for nanobiotechnology and therapeutics. Angew. Chem. Int. Ed. 58, 2942–2957 (2019).

    CAS  Google Scholar 

  5. Kang, S., Ohshima, K., Shimizu, M., Amirhaeri, S. & Wells, R. D. Pausing of DNA synthesis in vitro at specific loci in CTG and CGG triplet repeats from human hereditary disease genes. J. Biol. Chem. 270, 27014–27021 (1995).

    CAS  Google Scholar 

  6. Dong, Y., Yang, Z. & Liu, D. Using small molecules to prepare vesicles with designable shapes and sizes via frame-guided assembly strategy. Small 11, 3768–3771 (2015).

    CAS  Google Scholar 

  7. Davies, R. J. H. & Davidson, N. Base pairing equilibria between polynucleotides and complementary monomers. Biopolymers 10, 1455–1479 (1971).

    CAS  Google Scholar 

  8. Li, C., Cafferty, B. J., Karunakaran, S. C., Schuster, G. B. & Hud, N. V. Formation of supramolecular assemblies and liquid crystals by purine nucleobases and cyanuric acid in water: implications for the possible origins of RNA. Phys. Chem. Chem. Phys. 18, 20091–20096 (2016).

    CAS  Google Scholar 

  9. Chen, D., Meena, Sharma, S. K. & McLaughlin, L. W. Formation and stability of a Janus-wedge type of DNA triplex. J. Am. Chem. Soc. 126, 70–71 (2004).

    Google Scholar 

  10. Zeng, Y., Pratumyot, Y., Piao, X. & Bong, D. Discrete assembly of synthetic peptide–DNA triplex structures from polyvalent melamine–thymine bifacial recognition. J. Am. Chem. Soc. 134, 832–835 (2012).

    CAS  Google Scholar 

  11. Avakyan, N. et al. Reprogramming the assembly of unmodified DNA with a small molecule. Nat. Chem. 8, 368–376 (2016).

    CAS  Google Scholar 

  12. Zhou, W., Saran, R. & Liu, J. Metal sensing by DNA. Chem. Rev. 117, 8272–8325 (2017).

    CAS  Google Scholar 

  13. Gothelf, K. V., Thomsen, A., Nielsen, M., Cló, E. & Brown, R. S. Modular DNA-programmed assembly of linear and branched conjugated nanostructures. J. Am. Chem. Soc. 126, 1044–1046 (2004).

    CAS  Google Scholar 

  14. Yamane, T. & Davidson, N. On the complexing of desoxyribonucleic acid (DNA) by mercuric ion. J. Am. Chem. Soc. 83, 2599–2607 (1961).

    CAS  Google Scholar 

  15. Ono, A. et al. Specific interactions between silver(i) ions and cytosine–cytosine pairs in DNA duplexes. Chem. Commun. 2008, 4825–4827 (2008).

    Google Scholar 

  16. Tanaka, K., Tengeiji, A., Kato, T., Toyama, N. & Shionoya, M. A discrete self-assembled metal array in artificial DNA. Science 299, 1212–1213 (2003).

    CAS  Google Scholar 

  17. Mao, J., DeSantis, C. & Bong, D. Small molecule recognition triggers secondary and tertiary interactions in DNA folding and hammerhead ribozyme catalysis. J. Am. Chem. Soc. 139, 9815–9818 (2017).

    CAS  Google Scholar 

  18. Vollhardt, D., Liu, F., Rudert, R. & He, W. Interfacial molecular recognition of dissolved thymine by medium chain dialkyl melamine-type monolayers. J. Phys. Chem. B 109, 10849–10857 (2005).

    CAS  Google Scholar 

  19. Lange, R. F. M. et al. Crystal engineering of melamine–Imide complexes; tuning the stoichiometry by steric hindrance of the imide carbonyl groups. Angew. Chem. Int. Ed. 36, 969–971 (1997).

    CAS  Google Scholar 

  20. Du, J., Wang, Z., Peng, X. & Fan, J. In situ colorimetric recognition of melamine based on thymine derivative-functionalized gold nanoparticle. Ind. Eng. Chem. Res. 54, 12011–12016 (2015).

    CAS  Google Scholar 

  21. Renny, J. S., Tomasevich, L. L., Tallmadge, E. H. & Collum, D. B. Method of continuous variations: applications of job plots to the study of molecular associations in organometallic chemistry. Angew. Chem. Int. Ed. 52, 11998–12013 (2013).

    CAS  Google Scholar 

  22. Ulatowski, F., Dąbrowa, K., Bałakier, T. & Jurczak, J. Recognizing the limited applicability of job plots in studying host–guest interactions in supramolecular chemistry. J. Org. Chem. 81, 1746–1756 (2016).

    CAS  Google Scholar 

  23. Mikol, V., Rodeau, J.-L. & Giegé, R. Experimental determination of water equilibration rates in the hanging drop method of protein crystallization. Anal. Biochem. 186, 332–339 (1990).

    CAS  Google Scholar 

  24. Dickerson, R. E. DNA structure from A to Z. Methods Enzymol. 211, 67–111 (1992).

    CAS  Google Scholar 

  25. Dixon, J. K., Woodberry, N. T. & Costa, G. W. The dissociation constants of melamine and certain of its compounds. J. Am. Chem. Soc. 69, 599–603 (1947).

    CAS  Google Scholar 

  26. De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).

    Google Scholar 

  27. Smulders, M. M. J. et al. How to distinguish isodesmic from cooperative supramolecular polymerisation. Chem. Eur. J. 16, 362–367 (2010).

    CAS  Google Scholar 

  28. Zhao, D. & Moore, J. S. Nucleation–elongation: a mechanism for cooperative supramolecular polymerization. Org. Biomol. Chem. 1, 3471–3491 (2003).

    CAS  Google Scholar 

  29. Seto, C. T. & Whitesides, G. M. Self-assembly based on the cyanuric acid–melamine lattice. J. Am. Chem. Soc. 112, 6409–6411 (1990).

    CAS  Google Scholar 

  30. Woodside, M. T. et al. Nanomechanical measurements of the sequence-dependent folding landscapes of single nucleic acid hairpins. Proc. Natl Acad. Sci. USA 103, 6190–6195 (2006).

    CAS  Google Scholar 

  31. Koirala, D. et al. A single-molecule platform for investigation of interactions between G-quadruplexes and small-molecule ligands. Nat. Chem. 3, 782–787 (2011).

    CAS  Google Scholar 

  32. Jonchhe, S. et al. Binding of a telomestatin derivative changes mechanical anisotropy of human telomeric G-quadruplex. Angew. Chem. Int. Ed. Engl. 58, 877–881 (2019).

    CAS  Google Scholar 

  33. Koirala, D., Yu, Z., Dhakal, S. & Mao, H. Detection of single nucleotide polymorphism using tension-dependent stochastic behavior of a single-molecule template. J. Am. Chem. Soc. 133, 9988–9991 (2011).

    CAS  Google Scholar 

  34. Fire, A. & Xu, S. Q. Rolling replication of short DNA circles. Proc. Natl Acad. Sci. USA 92, 4641–4645 (1995).

    CAS  Google Scholar 

  35. Liu, D., Daubendiek, S. L., Zillman, M. A., Ryan, K. & Kool, E. T. Rolling circle DNA synthesis: small circular oligonucleotides as efficient templates for DNA polymerases. J. Am. Chem. Soc. 118, 1587–1594 (1996).

    CAS  Google Scholar 

  36. Mandal, S., Koirala, D., Selvam, S., Ghimire, C. & Mao, H. A molecular tuning fork in single-molecule mechanochemical sensing. Angew. Chem. Int. Ed. Engl. 54, 7607–7611 (2015).

    CAS  Google Scholar 

  37. Huang, H. et al. Visual detection of melamine in milk samples based on label-free and labeled gold nanoparticles. Talanta 85, 1013–1019 (2011).

    CAS  Google Scholar 

  38. Qi, W. J., Wu, D., Ling, J. & Huang, C. Z. Visual and light scattering spectrometric detections of melamine with polythymine-stabilized gold nanoparticles through specific triple hydrogen-bonding recognition. Chem. Commun. 46, 4893–4895 (2010).

    CAS  Google Scholar 

  39. Li, H., Somerson, J., Xia, F. & Plaxco, K. W. Electrochemical DNA-based sensors for molecular quality control: continuous, real-time melamine detection in flowing whole milk. Anal. Chem. 90, 10641–10645 (2018).

    CAS  Google Scholar 

  40. Seeman, N. C. & Sleiman, H. F. DNA nanotechnology. Nat. Rev. Mater. 3, 17068 (2017).

    Google Scholar 

  41. Fu, T. J. & Seeman, N. C. DNA double-crossover molecules. Biochemistry 32, 3211–3220 (1993).

    CAS  Google Scholar 

  42. Liu, L., Li, Y., Wang, Y., Zheng, J. & Mao, C. Regulating DNA self-assembly by DNA–surface interactions. ChemBioChem 18, 2404–2407 (2017).

    CAS  Google Scholar 

  43. Avakyan, N., Conway, J. W. & Sleiman, H. F. Long-range ordering of blunt-ended DNA tiles on supported lipid bilayers. J. Am. Chem. Soc. 139, 12027–12034 (2017).

    CAS  Google Scholar 

  44. He, Y., Chen, Y., Liu, H., Ribbe, A. E. & Mao, C. Self-assembly of hexagonal DNA two-dimensional (2D) arrays. J. Am. Chem. Soc. 127, 12202–12203 (2005).

    CAS  Google Scholar 

  45. He, Y. et al. Sequence symmetry as a tool for designing DNA nanostructures. Angew. Chem. Int. Ed. 44, 6694–6696 (2005).

    CAS  Google Scholar 

  46. Vantomme, G. & Meijer, E. W. The construction of supramolecular systems. Science 363, 1396–1397 (2019).

    CAS  Google Scholar 

  47. Sassolas, A., Leca-Bouvier, B. D. & Blum, L. J. DNA biosensors and microarrays. Chem. Rev. 108, 109–139 (2008).

    CAS  Google Scholar 

  48. Krishnamurthy, R. Experimentally investigating the origin of DNA/RNA on early Earth. Nat. Commun. 9, 5175 (2018).

    CAS  Google Scholar 

  49. Tarköy, M., Phipps, A. K., Schultze, P. & Feigon, J. Solution structure of an intramolecular DNA triplex linked by hexakis(ethylene glycol) units: d(AGAGAGAA-(EG)6-TTCTCTCT-(EG)6-TCTCTCTT). Biochemistry 37, 5810–5819 (1998).

    Google Scholar 

  50. Mao, H. & Luchette, P. An integrated laser-tweezers instrument for microanalysis of individual protein aggregates. Sens. Actuators B 129, 764–771 (2008).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was financial support by ONR (N00014-15-1-2707) and NSFC (21974111) to C.M., National Science Foundation (CBET-1904921) and National Institutes of Health (NIH 1R01CA236350) (in part) to H.M., the Natural Sciences and Engineering Research Council (NSERC) of Canada and the Canada Research Chairs Program to H.F.S. and F.J.R., and the Government of Canada for a Banting Fellowship to F.J.R.

Author information

Authors and Affiliations

Authors

Contributions

H.F.S., H.M. and C.M supervised the project. Q.L. and S.W. conducted PAGE analyses. J.Z. and H.H. conducted crystallographic analysis. L.L. conducted AFM imaging. S.J. and S.M. conducted mechanical measurements. Q.L. and F.J.R. conducted CD, thermal denaturation and assembly mechanism experiments. All the authors contributed to the data analysis and the writing of the manuscript.

Corresponding authors

Correspondence to Hanadi F. Sleiman, Hanbin Mao or Chengde Mao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–26 and Tables 1–3.

Reporting Summary

Source data

Source Data Fig. 3

Source data for crystallography.

Source Data Fig. 4

Source data for mechanical force spectroscopy.

Source Data Fig. 5

Source data for mechanical force spectroscopy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q., Zhao, J., Liu, L. et al. A poly(thymine)–melamine duplex for the assembly of DNA nanomaterials. Nat. Mater. 19, 1012–1018 (2020). https://doi.org/10.1038/s41563-020-0728-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-0728-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing