Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Evidence of higher-order topology in multilayer WTe2 from Josephson coupling through anisotropic hinge states

An Author Correction to this article was published on 17 July 2020

This article has been updated

Abstract

Td-WTe2 (non-centrosymmetric and orthorhombic), a type-II Weyl semimetal, is expected to have higher-order topological phases with topologically protected, helical one-dimensional hinge states when its Weyl points are annihilated. However, the detection of these hinge states is difficult due to the semimetallic behaviour of the bulk. In this study, we have spatially resolved the hinge states by analysing the magnetic field interference of the supercurrent in Nb–WTe2–Nb proximity Josephson junctions. The Josephson current along the a axis of the WTe2 crystal, but not along the b axis, showed a sharp enhancement at the edges of the junction, and the amount of enhanced Josephson current was comparable to the upper limits of a single one-dimensional helical channel. Our experimental observations suggest a higher-order topological phase in WTe2 and its corresponding anisotropic topological hinge states, in agreement with theoretical calculations. Our work paves the way for the study of hinge states in topological transition-metal dichalcogenides and analogous phases.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Anisotropy of the WTe2 crystal.
Fig. 2: Characteristics of the WTe2-based Josephson junction.
Fig. 3: Interference patterns of the WTe2 Josephson junction and extracted current profiles.
Fig. 4: Fraunhofer pattern of a partially insulated Josephson junction.

Data availability

The data that support the findings of this study are available from the corresponding authors on reasonable request.

Change history

References

  1. Armitage, N. P., Mele, E. J. & Vishwanath, A. Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018).

    CAS  Google Scholar 

  2. Soluyanov, A. A. et al. Type-II Weyl semimetals. Nature 527, 495–498 (2015).

    CAS  Google Scholar 

  3. Grushin, A. G. Consequences of a condensed matter realization of Lorentz-violating QED in Weyl semi-metals. Phys. Rev. D. 86, 045001 (2012).

    Google Scholar 

  4. Zyuzin, A. A. & Tiwari, R. P. Intrinsic anomalous Hall effect in type-II Weyl semimetals. JETP Lett. 103, 717–722 (2016).

    CAS  Google Scholar 

  5. Ma, Q. et al. Observation of the nonlinear Hall effect under time-reversal-symmetric conditions. Nature 565, 337–342 (2019).

    CAS  Google Scholar 

  6. Kang, K., Li, T., Sohn, E., Shan, J. & Mak, K. F. Nonlinear anomalous Hall effect in few-layer WTe2. Nat. Mater. 18, 324–328 (2019).

    CAS  Google Scholar 

  7. O’Brien, T. E., Diez, M. & Beenakker, C. W. J. Magnetic breakdown and Klein tunneling in a type-II Weyl semimetal. Phys. Rev. Lett. 116, 236401 (2016).

    Google Scholar 

  8. Yu, Z.-M., Yao, Y. & Yang, S. A. Predicted unusual magnetoresponse in type-II Weyl semimetals. Phys. Rev. Lett. 117, 077202 (2016).

    Google Scholar 

  9. Chen, C.-Z. et al. Asymmetric Josephson effect in inversion symmetry breaking topological materials. Phys. Rev. B 98, 075430 (2018).

    CAS  Google Scholar 

  10. Pan, X.-C. et al. Pressure-driven dome-shaped superconductivity and electronic structural evolution in tungsten ditelluride. Nat. Commun. 6, 7805 (2015).

    Google Scholar 

  11. Qi, Y. et al. Superconductivity in Weyl semimetal candidate MoTe2. Nat. Commun. 7, 11038 (2016).

    CAS  Google Scholar 

  12. Deng, K. et al. Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe2. Nat. Phys. 12, 1105–1110 (2016).

    CAS  Google Scholar 

  13. Sun, Y., Wu, S.-C., Ali, M. N., Felser, C. & Yan, B. Prediction of Weyl semimetal in orthorhombic MoTe2. Phys. Rev. B 92, 161107 (2015).

    Google Scholar 

  14. Qian, X., Liu, J., Fu, L. & Li, J. Quantum spin Hall effect in two-dimensional transition metal dichalcogenides. Science 346, 1344–1347 (2014).

    CAS  Google Scholar 

  15. Fei, Z. et al. Edge conduction in monolayer WTe2. Nat. Phys. 13, 677–682 (2017).

    CAS  Google Scholar 

  16. Wu, S. et al. Observation of the quantum spin Hall effect up to 100 Kelvin in a monolayer crystal. Science 359, 76–79 (2018).

    CAS  Google Scholar 

  17. Tang, S. et al. Quantum spin Hall state in monolayer 1T’-WTe2. Nat. Phys. 13, 683–687 (2017).

    CAS  Google Scholar 

  18. Peng, L. et al. Observation of topological states residing at step edges of WTe2. Nat. Commun. 8, 659 (2017).

    Google Scholar 

  19. Cucchi, I. et al. Microfocus laser–angle-resolved photoemission on encapsulated mono-, bi-, and few-Layer 1T′-WTe2. Nano Lett. 19, 554–560 (2019).

    CAS  Google Scholar 

  20. Wang, Z., Wieder, B. J., Li, J., Yan, B. & Bernevig, B. A. Higher-order topology, monopole nodal lines, and the origin of large Fermi arcs in transition metal dichalcogenides XTe2 (X=Mo, W). Phys. Rev. Lett. 123, 186401 (2019).

    CAS  Google Scholar 

  21. runo, F. Y. et al.Observation of large topologically trivial Fermi arcs in the candidate type-II Weyl semimetal WTe2. Phys. Rev. B 94, (2016).

  22. Zhang, W. et al. Quasiparticle interference of surface states in the type-II Weyl semimetal WTe2. Phys. Rev. B 96, 165125 (2017).

    Google Scholar 

  23. Ali, M. N. et al. Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014).

    CAS  Google Scholar 

  24. Ali, M. N. et al. Correlation of crystal quality and extreme magnetoresistance of WTe2. Europhys. Lett. 110, 67002 (2015).

    Google Scholar 

  25. Zhang, Y., Small, J. P., Pontius, W. V. & Kim, P. Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices. Appl. Phys. Lett. 86, 073104 (2005).

    Google Scholar 

  26. Zhu, Z. et al. Quantum oscillations, thermoelectric coefficients, and the Fermi surface of semimetallic WTe2. Phys. Rev. Lett. 114, 176601 (2015).

    Google Scholar 

  27. Li, P. et al. Evidence for topological type-II Weyl semimetal WTe2. Nat. Commun. 8, 2150 (2017).

    Google Scholar 

  28. Lee, C.-H. et al. Tungsten ditelluride: a layered semimetal. Sci. Rep. 5, 10013 (2015).

    CAS  Google Scholar 

  29. Song, Q. et al. The in-plane anisotropy of WTe2 investigated by angle-dependent and polarized Raman spectroscopy. Sci. Rep. 6, 29254 (2016).

    Google Scholar 

  30. Courtois, H., Meschke, M., Peltonen, J. T. & Pekola, J. P. Origin of hysteresis in a proximity Josephson junction. Phys. Rev. Lett. 101, 067002 (2008).

    CAS  Google Scholar 

  31. Hart, S. et al. Induced superconductivity in the quantum spin Hall edge. Nat. Phys. 10, 638–643 (2014).

    CAS  Google Scholar 

  32. Pribiag, V. S. et al. Edge-mode superconductivity in a two-dimensional topological insulator. Nat. Nanotechnol. 10, 593–597 (2015).

    CAS  Google Scholar 

  33. Lee, J. H. et al. Local and nonlocal Fraunhofer-like pattern from an edge-stepped topological surface Josephson current distribution. Nano Lett. 14, 5029–5034 (2014).

    CAS  Google Scholar 

  34. Schindler, F. et al. Higher-order topology in bismuth. Nat. Phys. 14, 918–924 (2018).

    CAS  Google Scholar 

  35. Ezawa, M. Second-order topological insulators and loop-nodal semimetals in transition metal dichalcogenides XTe2 (X = Mo, W). Sci. Rep. 9, 5286 (2019).

    Google Scholar 

  36. Gray, M. J. et al. Evidence for helical hinge zero modes in an Fe-based superconductor. Nano Lett. 19, 4890–4896 (2019).

    CAS  Google Scholar 

  37. Bovenzi, N. et al. Chirality blockade of Andreev reflection in a magnetic Weyl semimetal. Phys. Rev. B 96, 035437 (2017).

    Google Scholar 

  38. Khanna, U., Kundu, A., Pradhan, S. & Rao, S. Proximity-induced superconductivity in Weyl semimetals. Phys. Rev. B 90, 195430 (2014).

    Google Scholar 

  39. Faraei, Z. & Jafari, S. A. Induced superconductivity in Fermi arcs. Phys. Rev. B 100, 035447 (2019).

    CAS  Google Scholar 

  40. Wang, W. et al. Evidence for an edge supercurrent in the Weyl superconductor MoTe2. Science 368, 534–537 (2020).

    CAS  Google Scholar 

  41. Huang, E. et al. Edge superconductivity in multilayer WTe2 Josephson junction. Natl Sci. Rev. https://doi.org/10.1093/nsr/nwaa114 (2020).

  42. Kononov, A. et al. One-dimensional edge transport in few-layer WTe2. Nano Lett. 20, 4228–4233 (2020).

    CAS  Google Scholar 

  43. Wu, Y. et al. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe2. Phys. Rev. B 94, 121113 (2016).

    Google Scholar 

  44. Tang, F., Po, H. C., Vishwanath, A. & Wan, X. Efficient topological materials discovery using symmetry indicators. Nat. Phys. 15, 470–476 (2019).

    CAS  Google Scholar 

Download references

Acknowledgements

We thank H.-J. Lee and G.Y. Cho for critical reading of the manuscript. Y.-B.C. and G.-H.L. were supported by Samsung Science and Technology Foundation (project no. SSTF-BA1702-05) for device fabrications and low-temperature measurements, and the National Research Foundation of Korea (NRF) funded by the Korean Government (grant no. 2016R1A5A1008184) for data analysis. J.K. and S.-B.S. acknowledge the support from the National Research Foundation of Korea (grant no. 2017R1C1B2012729). B.J.K. acknowledges the support from the Institute for Basic Science (IBS-R014-A2). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by MEXT, Japan and CREST (JPMJCR15F3), JST. K.C.F. acknowledges the support from the Army Research Office under Cooperative Agreement Number W911NF-17-1-0574. C.-Z.C. and K.T.L acknowledge the support of The Croucher Foundation and HKRGC (C6026-16W, 16324216, 16307117 and 16309718). M.N.A. acknowledges support from the Alexander von Humboldt Foundation’s Sofia Kovalevskaja Award and the BMBF MINERVA ARCHES Award.

Author information

Authors and Affiliations

Authors

Contributions

K.C.F., M.N.A., K.T.L. and G.-H.L. conceived and supervised the project. Y.-B.C. fabricated the samples. Y.-B.C. and J.P. performed transport experiments. J.Y. and M.N.A. provided the WTe2 crystal, and T.T. and K.W. provided the hexagonal boron nitride crystal. S.-B.S., B.J.K. and J.K. collected and analysed the polarized Raman spectrum. Y.X., C.-Z.C. and K.T.L. performed theoretical analysis and calculations. Y.-B.C., Y.X., K.C.F., M.N.A., K.T.L. and G.-H.L. wrote the paper with inputs from C.-Z.C., J.P., S.-B.S. and J.K.

Corresponding authors

Correspondence to Kin Chung Fong, Mazhar N. Ali, Kam Tuen Law or Gil-Ho Lee.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion Sections S1–S10, Figs. 1–10 and Tables 1 and 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, YB., Xie, Y., Chen, CZ. et al. Evidence of higher-order topology in multilayer WTe2 from Josephson coupling through anisotropic hinge states. Nat. Mater. 19, 974–979 (2020). https://doi.org/10.1038/s41563-020-0721-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-0721-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing