High-performance solar flow battery powered by a perovskite/silicon tandem solar cell


The fast penetration of electrification in rural areas calls for the development of competitive decentralized approaches. A promising solution is represented by low-cost and compact integrated solar flow batteries; however, obtaining high energy conversion performance and long device lifetime simultaneously in these systems has been challenging. Here, we use high-efficiency perovskite/silicon tandem solar cells and redox flow batteries based on robust BTMAP-Vi/NMe-TEMPO redox couples to realize a high-performance and stable solar flow battery device. Numerical analysis methods enable the rational design of both components, achieving an optimal voltage match. These efforts led to a solar-to-output electricity efficiency of 20.1% for solar flow batteries, as well as improved device lifetime, solar power conversion utilization ratio and capacity utilization rate. The conceptual design strategy presented here also suggests general future optimization approaches for integrated solar energy conversion and storage systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic design and solar performance of perovskite/silicon tandem solar cell.
Fig. 2: Calculation of SOEE as a function of Ecell0.
Fig. 3: Electrochemical characterization of redox couples and RFBs.
Fig. 4: Performance of integrated SFB built with perovskite/silicon solar cell and BTMAP-Vi/NMe-TEMPO redox couples.

Data availability

Source data are provided with this paper. The remaining data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. 1.

    Eke, K. P. Emerging considerations of rural electrification infrastructure development in Africa. In 2017 IEEE PES Power Africa Conference 138–142 (IEEE, 2017).

  2. 2.

    Cook, P. Infrastructure, rural electrification and development. Energy Sustain. Dev. 15, 304–313 (2011).

    Google Scholar 

  3. 3.

    Wamukonya, N. Solar home system electrification as a viable technology option for Africa’s development. Energy Policy 35, 6–14 (2007).

    Google Scholar 

  4. 4.

    Halder, P. K. Potential and economic feasibility of solar home systems implementation in Bangladesh. Renew. Sustain. Energy Rev. 65, 568–576 (2016).

    Google Scholar 

  5. 5.

    Charles, R. G., Davies, M. L., Douglas, P., Hallin, I. L. & Mabbett, I. Sustainable energy storage for solar home systems in rural Sub-Saharan Africa—a comparative examination of lifecycle aspects of battery technologies for circular economy, with emphasis on the South African context. Energy 166, 1207–1215 (2019).

    CAS  Google Scholar 

  6. 6.

    Gurung, A. & Qiao, Q. Q. Solar charging batteries: advances, challenges, and opportunities. Joule 2, 1217–1230 (2018).

    CAS  Google Scholar 

  7. 7.

    Schmidt, D., Hager, M. D. & Schubert, U. S. Photo-rechargeable electric energy storage systems. Adv. Energy Mater. 6, 1500369 (2015).

    Google Scholar 

  8. 8.

    Yu, M. et al. Solar-powered electrochemical energy storage: an alternative to solar fuels. J. Mater. Chem. A 4, 2766–2782 (2016).

    CAS  Google Scholar 

  9. 9.

    Wedege, K., Bae, D., Smith, W. A., Mendes, A. & Bentien, A. Solar redox flow batteries with organic redox couples in aqueous electrolytes: a minireview. J. Phys. Chem. C 122, 25729–25740 (2018).

    CAS  Google Scholar 

  10. 10.

    Wedege, K. et al. Unbiased, complete solar charging of a neutral flow battery by a single Si photocathode. RSC Adv. 8, 6331–6340 (2018).

    CAS  Google Scholar 

  11. 11.

    Li, W., Fu, H.-C., Zhao, Y., He, J.-H. & Jin, S. 14.1% efficient monolithically integrated solar flow battery. Chem 4, 2644–2657 (2018).

    CAS  Google Scholar 

  12. 12.

    Li, W. J. et al. A long lifetime aqueous organic solar flow battery. Adv. Energy Mater. 9, 1900918 (2019).

    Google Scholar 

  13. 13.

    Yu, M. Z. et al. Aqueous lithium-iodine solar flow battery for the simultaneous conversion and storage of solar energy. J. Am. Chem. Soc. 137, 8332–8335 (2015).

    CAS  Google Scholar 

  14. 14.

    Liao, S. et al. Integrating a dual-silicon photoelectrochemical cell into a redox flow battery for unassisted photocharging. Nat. Commun. 7, 11474–11478 (2016).

    CAS  Google Scholar 

  15. 15.

    Li, W. et al. Integrated photoelectrochemical solar energy conversion and organic redox flow battery devices. Angew. Chem. Int. Ed. 55, 13104–13108 (2016).

    CAS  Google Scholar 

  16. 16.

    Wedege, K., Azevedo, J., Khataee, A., Bentien, A. & Mendes, A. Direct solar charging of an organic-inorganic, stable, and aqueous alkaline redox flow battery with a hematite photoanode. Angew. Chem. Int. Ed. 55, 7142–7147 (2016).

    CAS  Google Scholar 

  17. 17.

    Cheng, Q. et al. Photorechargeable high voltage redox battery enabled by Ta3N5 and GaN/Si dual-photoelectrode. Adv. Mater. 351, 1700312–1700318 (2017).

    Google Scholar 

  18. 18.

    McKone, J. R., DiSalvo, F. J. & Abruna, H. D. Solar energy conversion, storage, and release using an integrated solar-driven redox flow battery. J. Mater. Chem. A 5, 5362–5372 (2017).

    CAS  Google Scholar 

  19. 19.

    Zhou, Y. et al. Efficient solar energy harvesting and storage through a robust photocatalyst driving reversible redox reactions. Adv. Mater. 103, 1802294–1802297 (2018).

    Google Scholar 

  20. 20.

    Hu, S. et al. Amorphous TiO2 coatings stabilize Si, GaAs, and GaP photoanodes for efficient water oxidation. Science 344, 1005–1009 (2014).

    CAS  Google Scholar 

  21. 21.

    Khan, M. A. et al. Importance of oxygen measurements during photoelectrochemical water-splitting reactions. ACS Energy Lett. 4, 2712–2718 (2019).

    CAS  Google Scholar 

  22. 22.

    Liu, T., Wei, X., Nie, Z., Sprenkle, V. & Wang, W. A total organic aqueous redox flow battery employing a low cost and sustainable methyl viologen anolyte and 4-HO-TEMPO catholyte. Adv. Energy Mater. 6, 1501449 (2015).

    Google Scholar 

  23. 23.

    Liu, Y. et al. A long lifetime all-organic aqueous flow battery utilizing TMAP-TEMPO radical. Chem 5, 1861–1870 (2019).

    CAS  Google Scholar 

  24. 24.

    Hu, S. et al. Thin-film materials for the protection of semiconducting photoelectrodes in solar-fuel generators. J. Phys. Chem. C 119, 24201–24228 (2015).

    CAS  Google Scholar 

  25. 25.

    Bae, D., Seger, B., Vesborg, P. C. K., Hansen, O. & Chorkendorff, I. Strategies for stable water splitting via protected photoelectrodes. Chem. Soc. Rev. 46, 1933–1954 (2017).

    CAS  Google Scholar 

  26. 26.

    Beh, E. S. et al. A neutral pH aqueous organic-organometallic redox flow battery with extremely high capacity retention. ACS Energy Lett. 2, 639–644 (2017).

    CAS  Google Scholar 

  27. 27.

    Green, M. A. et al. Solar cell efficiency tables (version 54). Prog. Photovolt. 27, 565–575 (2019).

    Google Scholar 

  28. 28.

    Seger, B. et al. Using TiO2 as a conductive protective layer for photocathodic H2 evolution. J. Am. Chem. Soc. 135, 1057–1064 (2013).

    CAS  Google Scholar 

  29. 29.

    Shaner, M. R., Hu, S., Sun, K. & Lewis, N. S. Stabilization of Si microwire arrays for solar-driven H2O oxidation to O2(g) in 1.0 M KOH(aq) using conformal coatings of amorphous TiO2. Energy Environ. Sci. 8, 203–207 (2015).

    CAS  Google Scholar 

  30. 30.

    Zheng, J. H. et al. Large area efficient interface layer free monolithic perovskite/homo-junction-silicon tandem solar cell with over 20% efficiency. Energy Environ. Sci. 11, 2432–2443 (2018).

    CAS  Google Scholar 

  31. 31.

    Zheng, J. H. et al. 21.8% efficient monolithic perovskite/homo-junction-silicon tandem solar cell on 16 cm(2). ACS Energy Lett. 3, 2299–2300 (2018).

    CAS  Google Scholar 

  32. 32.

    Bush, K. A. et al. 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability. Nat. Energy 2, 17009 (2017).

    CAS  Google Scholar 

  33. 33.

    Correa-Baena, J. P. et al. Promises and challenges of perovskite solar cells. Science 358, 739–744 (2017).

    CAS  Google Scholar 

  34. 34.

    Yu, Z. S., Leilaeioun, M. & Holman, Z. Selecting tandem partners for silicon solar cells. Nat. Energy 1, 16137 (2016).

    Google Scholar 

  35. 35.

    Ji, Y. et al. A phosphonate-functionalized quinone redox flow battery at near-neutral pH with record capacity retention rate. Adv. Energy Mater. 9, 1900039 (2019).

    Google Scholar 

  36. 36.

    DeBruler, C. et al. Designer two-electron storage viologen anolyte materials for neutral aqueous organic redox flow batteries. Chem 3, 961–978 (2017).

    CAS  Google Scholar 

  37. 37.

    Park, M., Ryu, J., Wang, W. & Cho, J. Material design and engineering of next-generation flow-battery technologies. Nat. Rev. Mater 2, 16080–16018 (2016).

    Google Scholar 

  38. 38.

    Hollas, A. et al. A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries. Nat. Energy 3, 508–514 (2018).

    CAS  Google Scholar 

  39. 39.

    Luo, J. A., Hu, B., Hu, M. W., Zhao, Y. & Liu, T. L. Status and prospects of organic redox flow batteries toward sustainable energy storage. ACS Energy Lett. 4, 2220–2240 (2019).

    CAS  Google Scholar 

  40. 40.

    Weber, A. Z. et al. Redox flow batteries: a review. J. Appl. Electrochem. 41, 1137–1164 (2011).

    CAS  Google Scholar 

  41. 41.

    Darling, R. M., Gallagher, K. G., Kowalski, J. A., Ha, S. & Brushett, F. R. Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries. Energy Environ. Sci. 7, 3459–3477 (2014).

    CAS  Google Scholar 

  42. 42.

    Hu, B., DeBruler, C., Rhodes, Z. & Liu, T. L. Long-cycling aqueous organic redox flow battery (AORFB) toward sustainable and safe energy storage. J. Am. Chem. Soc. 139, 1207–1214 (2017).

    CAS  Google Scholar 

  43. 43.

    Goulet, M. A. & Aziz, M. J. Flow battery molecular reactant stability determined by symmetric cell cycling methods. J. Electrochem. Soc. 165, A1466–A1477 (2018).

    CAS  Google Scholar 

Download references


This research is supported by the King Abdullah University of Science and Technology (KAUST) Office of Sponsored Research (OSR) under award no. OSR-2017-CRG6-3453.02 to both J.-H.H. and S.J. The Australian Centre for Advanced Photovoltaics (ACAP) encompasses the Australian-based activities of the Australia–US Institute for Advanced Photovoltaics (AUSIAPV) and is supported by the Australian Renewable Energy Agency (ARENA). J.Z. and A.H.-B. thank ARENA for support via project 2014 RND075. T.L.L., B.H. and M.H. acknowledge the US National Science Foundation (CAREER Award, grant no. 1847674) and Utah State University faculty start-up fund for support. B.H. and M.H. are grateful for China Scholarship Council (CSC) Abroad Studying Fellowships to support their PhD study at Utah State University. We thank Z. Wu for help with FcNCl synthesis, and D. Roberts and X. Liu for help with NMR.

Author information




W.L. and S.J. designed the experiments. W.L. fabricated the SFB devices and carried out the electrochemical measurements with the help of H.-C.F. and A.V. W.L. and Y.Z. built the customized control device for SFB characterization. J.Z. and A.H.-B. fabricated the perovskite/silicon tandem solar cells. B.H., M.H. and T.L.L. synthesized the NMe-TEMPO and BTMAP-Vi redox couples. W.L. and S.J. wrote the manuscript and all authors commented on the manuscript.

Corresponding authors

Correspondence to Anita Ho-Baillie or Song Jin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23, Notes 1–3 and Tables 1 and 2.

Reporting Summary

Source data

Source Data Fig. 1

J-V performance of perovskite/silicon solar cell and photoelectrode.

Source Data Fig. 2

Numerical calculation of SOEE.

Source Data Fig. 3

Electrochemical characterization of redox couples and RFBs.

Source Data Fig. 4

Cycling performance of integrated SFB.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, W., Zheng, J., Hu, B. et al. High-performance solar flow battery powered by a perovskite/silicon tandem solar cell. Nat. Mater. (2020). https://doi.org/10.1038/s41563-020-0720-x

Download citation