Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Complex assemblies and crystals guided by DNA

The complexity of DNA-programmed nanoparticle assemblies has reached an unprecedented level owing to recent advances that enable delicate and comprehensive control over the formation of DNA bonds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Engineering nanoparticle crystals with high complexity.
Fig. 2: Nanoparticle superlattices organized by DNA origami frameworks.
Fig. 3: Strategies for custom nanoparticle modification.
Fig. 4: Rationally designed DNA crystals.

References

  1. Nie, Z., Petukhova, A. & Kumacheva, E. Nat. Nanotechnol. 5, 15–25 (2010).

    Article  CAS  Google Scholar 

  2. Whitesides, G. M., Mathias, J. P. & Seto, C. T. Science 254, 1312–1319 (1991).

    Article  CAS  Google Scholar 

  3. Grzelczak, M., Vermant, J., Furst, E. M. & Liz-Marzan, L. M. ACS Nano 4, 3591–3605 (2010).

    Article  CAS  Google Scholar 

  4. Jones, M. R., Seeman, N. C. & Mirkin, C. A. Science 347, 1260901 (2015).

    Article  CAS  Google Scholar 

  5. Laramy, C. R., O’Brien, M. N. & Mirkin, C. A. Nat. Rev. Mater. 4, 201–224 (2019).

    Article  CAS  Google Scholar 

  6. Seeman, N. C. & Sleiman, H. F. Nat. Rev. Mater. 3, 17068 (2018).

    Article  CAS  Google Scholar 

  7. Tian, Y. et al. Nat. Nanotechnol. 10, 637–644 (2015).

    Article  CAS  Google Scholar 

  8. Urban, M. J. et al. J. Am. Chem. Soc. 138, 5495–5498 (2016).

    Article  CAS  Google Scholar 

  9. Wang, P. et al. J. Am. Chem. Soc. 138, 7733–7740 (2016).

    Article  CAS  Google Scholar 

  10. Zhang, Y. et al. Nat. Mater. 14, 840–847 (2015).

    Article  CAS  Google Scholar 

  11. Kim, Y., Macfarlane, R. J., Jones, M. R. & Mirkin, C. A. Science 351, 579–582 (2016).

    Article  CAS  Google Scholar 

  12. Mason, J. A. et al. J. Am. Chem. Soc. 138, 8722–8725 (2016).

    Article  CAS  Google Scholar 

  13. Nickel, B. & Liedl, T. Nat. Mater. 14, 746–749 (2015).

    Article  CAS  Google Scholar 

  14. O’Brien, M. N., Jones, M. R., Lee, B. & Mirkin, C. A. Nat. Mater. 14, 833–839 (2015).

    Article  CAS  Google Scholar 

  15. Lu, F., Yager, K. G., Zhang, Y., Xin, H. & Gang, O. Nat. Commun. 6, 6912 (2015).

    Article  CAS  Google Scholar 

  16. Rogers, W. B., Shih, W. M. & Manoharan, V. N. Nat. Rev. Mater. 1, 16008 (2016).

    Article  CAS  Google Scholar 

  17. O’Brien, M. N. et al. Proc. Natl Acad. Sci. USA 113, 10485–10490 (2016).

    Article  CAS  Google Scholar 

  18. Lu, F. et al. Unusual packing of soft-shelled nanocubes. Sci. Adv. 5, eaaw2399 (2019).

    Article  Google Scholar 

  19. Lin, H. et al. Science 355, 931–935 (2017).

    Article  CAS  Google Scholar 

  20. Xiong, H., Sfeir, M. Y. & Gang, O. Nano Lett. 10, 4456–4462 (2010).

    Article  CAS  Google Scholar 

  21. Maye, M. M., Kumara, M. T., Nykypanchuk, D., Sherman, W. B. & Gang, O. Nat. Nanotechnol. 5, 116–120 (2010).

    Article  CAS  Google Scholar 

  22. Girard, M. et al. Science 364, 1174–1178 (2019).

    Article  CAS  Google Scholar 

  23. Lin, Q. Y. et al. Science 359, 669–672 (2018).

    Article  CAS  Google Scholar 

  24. Liu, N. & Liedl, T. Chem. Rev. 118, 3032–3053 (2018).

    Article  CAS  Google Scholar 

  25. Lan, X. et al. J. Am. Chem. Soc. 137, 457–462 (2015).

    Article  CAS  Google Scholar 

  26. Tian, C. et al. ACS Nano 11, 7036–7048 (2017).

    Article  CAS  Google Scholar 

  27. Liu, W. et al. Science 351, 582–586 (2016).

    Article  CAS  Google Scholar 

  28. Tian, Y. et al. Nat. Mater. 15, 654–661 (2016).

    Article  CAS  Google Scholar 

  29. Lan, X. et al. J. Am. Chem. Soc. 140, 11763–11770 (2018).

    Article  CAS  Google Scholar 

  30. Liu, W., Halverson, J., Tian, Y., Tkachenko, A. V. & Gang, O. Nat. Chem. 8, 867–873 (2016).

    Article  CAS  Google Scholar 

  31. Zhang, T. et al. Adv. Mater. 30, e1800273 (2018).

    Article  CAS  Google Scholar 

  32. Tian, Y. et al. Nat. Mater. https://doi.org/10.1038/s41563-019-0550-x (2020).

  33. Li, Y., Liu, Z., Yu, G., Jiang, W. & Mao, C. J. Am. Chem. Soc. 137, 4320–4323 (2015).

    Article  CAS  Google Scholar 

  34. Ben Zion, M. Y. et al. Science 358, 633–636 (2017).

    Article  CAS  Google Scholar 

  35. Edwardson, T. G., Lau, K. L., Bousmail, D., Serpell, C. J. & Sleiman, H. F. Nat. Chem. 8, 162–170 (2016).

    Article  CAS  Google Scholar 

  36. Trinh, T. et al. Nat. Chem. 10, 184–192 (2018).

    Article  CAS  Google Scholar 

  37. Sun, W. et al. Science 346, 1258361 (2014).

    Article  CAS  Google Scholar 

  38. Chen, G. et al. Nat. Mater. 18, 169–174 (2019).

    Article  CAS  Google Scholar 

  39. Yao, G. et al. Nat. Mater. https://doi.org/10.1038/s41563-019-0549-3 (2019).

  40. Seeman, N. C. J. Theor. Biol. 99, 237–247 (1982).

    Article  CAS  Google Scholar 

  41. Zheng, J. et al. Nature 461, 74–77 (2009).

    Article  CAS  Google Scholar 

  42. Stahl, E., Praetorius, F., de Oliveira Mann, C. C., Hopfner, K. P. & Dietz, H. ACS Nano 10, 9156–9164 (2016).

    Article  CAS  Google Scholar 

  43. Ohayon, Y. P. et al. ACS Nano 13, 7957–7965 (2019).

    Article  CAS  Google Scholar 

  44. Li, Z. et al. J. Am. Chem. Soc. 141, 15850–15855 (2019).

    Article  CAS  Google Scholar 

  45. Hao, Y. et al. Nat. Chem. 9, 824–827 (2017).

    Article  CAS  Google Scholar 

  46. Simmons, C. R. et al. J. Am. Chem. Soc. 139, 11254–11260 (2017).

    Article  CAS  Google Scholar 

  47. Zhang, F., Simmons, C. R., Gates, J., Liu, Y. & Yan, H. Angew. Chem. Int. Ed. 57, 12504–12507 (2018).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, S., Zhang, F. & Yan, H. Complex assemblies and crystals guided by DNA. Nat. Mater. 19, 694–700 (2020). https://doi.org/10.1038/s41563-020-0719-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-0719-3

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing