Extended Data Fig. 3: Conductance modulation as a result of dopamine oxidation. | Nature Materials

Extended Data Fig. 3: Conductance modulation as a result of dopamine oxidation.

From: A biohybrid synapse with neurotransmitter-mediated plasticity

Extended Data Fig. 3

a, When dopamine (DA, pink circles) is oxidized to dopamine o-quinone (DQ, green circles), the oxidation products (2e-, 2 H+) can compensate the electronic and ionic charges in doped PEDOT:PSS, thereby de-doping the channel and gate (we note that other cations in solution such as Na+ or K+ may compensate PSS- instead of or in addition to H+). b, This reaction at the gate electrode (1) changes its potential, resulting in effective gating of the PEDOT:PSS postsynaptic channel, and results in a transfer of an electron and a proton to the postsynaptic channel (2) to maintain to a potential drop of Vpost. c, To test this hypothesis, a device structure as shown in b, is fabricated and the conductance of both the postsynaptic electrode and postsynaptic channel are measured before and after oxidation driven at the postsynaptic electrode. The conductance of both the postsynaptic channel and electrode decrease, confirming the transfer of protons (or cations) and electrons to both PEDOT:PSS electrodes.

Source data

Back to article page