Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Cortical cell stiffness is independent of substrate mechanics

Abstract

Cortical stiffness is an important cellular property that changes during migration, adhesion and growth. Previous atomic force microscopy (AFM) indentation measurements of cells cultured on deformable substrates have suggested that cells adapt their stiffness to that of their surroundings. Here we show that the force applied by AFM to a cell results in a significant deformation of the underlying substrate if this substrate is softer than the cell. This ‘soft substrate effect’ leads to an underestimation of a cell’s elastic modulus when analysing data using a standard Hertz model, as confirmed by finite element modelling and AFM measurements of calibrated polyacrylamide beads, microglial cells and fibroblasts. To account for this substrate deformation, we developed a ‘composite cell–substrate model’. Correcting for the substrate indentation revealed that cortical cell stiffness is largely independent of substrate mechanics, which has major implications for our interpretation of many physiological and pathological processes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Quantification of substrate displacements in AFM indentation measurements of cells.
Fig. 2: Substrate displacement and stress distribution under cells caused by AFM indentation measurements.
Fig. 3: Numerical validation.
Fig. 4: Experimental validation using PAA beads.
Fig. 5: Application to primary microglial cells.
Fig. 6: Comparison of normalized published and current data analysed by the Hertz model and hypothesis.

Similar content being viewed by others

Data availability

The data underlying this study are available from the authors upon reasonable request. The AFM force–distance curves raw data can be found at https://doi.org/10.6084/m9.figshare.10732415.

Code availability

Codes used for processing of AFM and confocal laser scanning microscopy raw data can be found at https://github.com/FranzeLab/AFM-data-analysis-and-processing/tree/master/Cell%20stiffness. Comsol models can be found at https://doi.org/10.6084/m9.figshare.10731869.

References

  1. Koser, D. E. et al. Mechanosensing is critical for axon growth in the developing brain. Nat. Neurosci. 19, 1592–1598 (2016).

    CAS  Google Scholar 

  2. Barriga, E. H., Franze, K., Charras, G. & Mayor, R. Tissue stiffening coordinates morphogenesis by triggering collective cell migration in vivo. Nature 554, 523–527 (2018).

    CAS  Google Scholar 

  3. Haase, K. & Pelling, A. E. Investigating cell mechanics with atomic force microscopy. J. R. Soc. Interface 12, 20140970 (2015).

    Google Scholar 

  4. Gautier, H. O. B. et al. in Methods in Cell Biology Vol. 125 (ed. Paluch, E. K.) 211–235 (Academic, 2015).

  5. Dufrêne, Y. F. et al. Imaging modes of atomic force microscopy for application in molecular and cell biology. Nat. Nanotechnol. 12, 295–307 (2017).

    Google Scholar 

  6. Wu, P.-H. et al. A comparison of methods to assess cell mechanical properties. Nat. Methods 15, 491–498 (2018).

    CAS  Google Scholar 

  7. Vahabikashi, A. et al. Probe sensitivity to cortical versus intracellular cytoskeletal network stiffness. Biophys. J. 116, 518–529 (2019).

    Google Scholar 

  8. Iyer, S., Gaikwad, R. M., Subba-Rao, V., Woodworth, C. D. & Sokolov, I. Atomic force microscopy detects differences in the surface brush of normal and cancerous cells. Nat. Nanotechnol. 4, 389–393 (2009).

    CAS  Google Scholar 

  9. Solon, J., Levental, I., Sengupta, K., Georges, P. C. & Janmey, P. A. Fibroblast adaptation and stiffness matching to soft elastic substrates. Biophys. J. 93, 4453–4461 (2007).

    CAS  Google Scholar 

  10. Tee, S.-Y., Fu, J., Chen, C. S. & Janmey, P. A. Cell shape and substrate rigidity both regulate cell stiffness. Biophys. J. 100, L25–L27 (2011).

    CAS  Google Scholar 

  11. Liu, H., Sun, Y. & Simmons, C. A. Determination of local and global elastic moduli of valve interstitial cells cultured on soft substrates. J. Biomech. 46, 1967–1971 (2013).

    Google Scholar 

  12. Rianna, C. & Radmacher, M. Comparison of viscoelastic properties of cancer and normal thyroid cells on different stiffness substrates. Eur. Biophys. J. 46, 309–324 (2017).

    CAS  Google Scholar 

  13. Chopra, A., Tabdanov, E., Patel, H., Janmey, P. A. & Kresh, J. Y. Cardiac myocyte remodeling mediated by N-cadherin-dependent mechanosensing. Am. J. Physiol. Heart Circ. Physiol. 300, H1252–H1266 (2011).

    CAS  Google Scholar 

  14. Hertz, H. Über die berührung fester elastischer körper. J. Reine Angew. Math. 92, 156–171 (1882).

    Google Scholar 

  15. Harris, A. R. & Charras, G. T. Experimental validation of atomic force microscopy-based cell elasticity measurements. Nanotechnology 22, 345102 (2011).

    Google Scholar 

  16. Ivanovska, I. L. et al. Cross-linked matrix rigidity and soluble retinoids synergize in nuclear lamina regulation of stem cell differentiation. Mol. Biol. Cell 28, 2010–2022 (2017).

    CAS  Google Scholar 

  17. Kronenberg, N. M. et al. Long-term imaging of cellular forces with high precision by elastic resonator interference stress microscopy. Nat. Cell Biol. 19, 864–872 (2017).

    CAS  Google Scholar 

  18. Liehm, P., Kronenberg, N. M. & Gather, M. C. Analysis of the precision, robustness, and speed of elastic resonator interference stress microscopy. Biophys. J. 114, 2180–2193 (2018).

    CAS  Google Scholar 

  19. Boussinesq, J. Application des Potentiels à l'Étude de l'Équilibre et du Mouvement des Solides Élastiques, Principalement au Calcul des Déformations et des Pressions Que Produisent, dans ces Solides, des Efforts Quelconques Exercés sur une Petite Partie de Leur Surface ou de Leur Intérieur: Mémoire Suivi de Notes Étendues sur Divers Points de Physique Mathématique et d’Analyse (L. Danel, 1885).

  20. Boudou, T., Ohayon, J., Picart, C. & Tracqui, P. An extended relationship for the characterization of Young’s modulus and Poisson’s ratio of tunable polyacrylamide gels. Biorheology 43, 721–728 (2006).

    CAS  Google Scholar 

  21. Sneddon, I. N. The relation between load and penetration in the axisymmetric Boussinesq problem for a punch of arbitrary profile. Int. J. Eng. Sci. 3, 47–57 (1965).

    Google Scholar 

  22. Bilodeau, G. G. Regular pyramid punch problem. J. Appl. Mech. 59, 519–523 (1992).

    Google Scholar 

  23. Guz, N., Dokukin, M., Kalaparthi, V. & Sokolov, I. If cell mechanics can be described by elastic modulus: study of different models and probes used in indentation experiments. Biophys. J. 107, 564–575 (2014).

    CAS  Google Scholar 

  24. Simon, M. et al. Load rate and temperature dependent mechanical properties of the cortical neuron and its pericellular layer measured by atomic force microscopy. Langmuir 32, 1111–1119 (2016).

    CAS  Google Scholar 

  25. Chrzanowska-Wodnicka, M. & Burridge, K. Rho-stimulated contractility drives the formation of stress fibers and focal adhesions. J. Cell Biol. 133, 1403–1415 (1996).

    CAS  Google Scholar 

  26. Pelham, R. J. & Wang, Y.-l Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc. Natl Acad. Sci. USA 94, 13661–13665 (1997).

    CAS  Google Scholar 

  27. Engler, A. J. et al. Myotubes differentiate optimally on substrates with tissue-like stiffness. J. Cell Biol. 166, 877–887 (2004).

    CAS  Google Scholar 

  28. Bollmann, L. et al. Microglia mechanics: immune activation alters traction forces and durotaxis. Front. Cell. Neurosci. 9, 363 (2015).

  29. Han, S. J., Bielawski, K. S., Ting, L. H., Rodriguez, M. L. & Sniadecki, N. J. Decoupling substrate stiffness, spread area, and micropost density: a close spatial relationship between traction forces and focal adhesions. Biophys. J. 103, 640–648 (2012).

    CAS  Google Scholar 

  30. Moshayedi, P. et al. The relationship between glial cell mechanosensitivity and foreign body reactions in the central nervous system. Biomaterials 35, 3919–3925 (2014).

    CAS  Google Scholar 

  31. Chen, C. S., Mrksich, M., Huang, S., Whitesides, G. M. & Ingber, D. E. Geometric control of cell life and death. Science 276, 1425–1428 (1997).

    CAS  Google Scholar 

  32. Discher, D. E., Janmey, P. A. & Wang, Y. Tissue cells feel and respond to the stiffness of their substrate. Science 310, 1139–1143 (2005).

    CAS  Google Scholar 

  33. Engler, A. J., Sen, S., Sweeney, H. L. & Discher, D. E. Matrix elasticity directs stem cell lineage specification. Cell 126, 677–689 (2006).

    CAS  Google Scholar 

  34. Kasza, K. E. et al. The cell as a material. Curr. Opin. Cell Biol. 19, 101–107 (2007).

    CAS  Google Scholar 

  35. Gupta, M. et al. Adaptive rheology and ordering of cell cytoskeleton govern matrix rigidity sensing. Nat. Commun. 6, 7525 (2015).

    CAS  Google Scholar 

  36. Soine, J. R. et al. Model-based traction force microscopy reveals differential tension in cellular actin bundles. PLoS Comput. Biol. 11, e1004076 (2015).

    Google Scholar 

  37. Humphrey, D., Duggan, C., Saha, D., Smith, D. & Käs, J. Active fluidization of polymer networks through molecular motors. Nature 416, 413–416 (2002).

    CAS  Google Scholar 

  38. Kovacs, M., Toth, J., Hetenyi, C., Malnasi-Csizmadia, A. & Sellers, J. R. Mechanism of blebbistatin inhibition of myosin II. J. Biol. Chem. 279, 35557–35563 (2004).

    CAS  Google Scholar 

  39. Gardel, M. L., Kasza, K. E., Brangwynne, C. P., Liu, J. & Weitz, D. A. in Methods in Cell Biology Vol. 89 (eds J.J. Correia & H.W. Detrich) 487–519 (Academic Press, 2008).

  40. Dimitriadis, E. K., Horkay, F., Maresca, J., Kachar, B. & Chadwick, R. S. Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82, 2798–2810 (2002).

    CAS  Google Scholar 

  41. Charras, G. T., Lehenkari, P. P. & Horton, M. A. Atomic force microscopy can be used to mechanically stimulate osteoblasts and evaluate cellular strain distributions. Ultramicroscopy 86, 85–95 (2001).

    CAS  Google Scholar 

  42. Moshayedi, P. et al. Mechanosensitivity of astrocytes on optimized polyacrylamide gels analyzed by quantitative morphometry. J. Phys. Condens. Matter 22, 194114 (2010).

    Google Scholar 

  43. Wilby, M. J. et al. N-cadherin inhibits Schwann cell migration on astrocytes. Mol. Cell. Neurosci. 14, 66–84 (1999).

    CAS  Google Scholar 

  44. Syed, Y. A. et al. Inhibition of oligodendrocyte precursor cell differentiation by myelin-associated proteins. Neurosurg. Focus 24, E5 (2008).

    Google Scholar 

  45. Cook, S. M. et al. Practical implementation of dynamic methods for measuring atomic force microscope cantilever spring constants. Nanotechnology 17, 2135–2145 (2006).

    CAS  Google Scholar 

  46. Pogoda, K. et al. Soft substrates containing hyaluronan mimic the effects of increased stiffness on morphology, motility, and proliferation of glioma cells. Biomacromolecules 18, 3040–3051 (2017).

    CAS  Google Scholar 

  47. Charrier, E. E., Pogoda, K., Wells, R. G. & Janmey, P. A. Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nat. Commun. 9, 449 (2018).

    Google Scholar 

  48. Gavara, N. Combined strategies for optimal detection of the contact point in AFM force–indentation curves obtained on thin samples and adherent cells. Sci. Rep. 6, 21267 (2016).

    CAS  Google Scholar 

  49. Han, S. J., Oak, Y., Groisman, A. & Danuser, G. Traction microscopy to identify force modulation in subresolution adhesions. Nat. Methods 12, 653–656 (2015).

  50. McGill, R., Tukey, J. W. & Larsen, W. A. Variations of box plots. Am. Stat. 32, 12–16 (1978).

    Google Scholar 

Download references

Acknowledgements

We thank P. Janmey, B. Fabry and U. Schwarz for critical discussions and comments on the manuscript, T. Schäffer for personal support and A. Winkel (JPK) for technical support, as well as J. Tavares and M. Kotter for microglial cells and B. Colledge for NIH 3T3 fibroblasts. We acknowledge funding from the German Science Foundation (DFG grant numbers RH 147/1-1 to J.R., EXC 1003 CiM to T.B.), the Herchel Smith Foundation (postdoctoral fellowship to A.D.), the Royal Society (University Research Fellowship to K.J.C.), the UK EPSRC (programme grant number EP/P030017/1 to M.C.G.), the Human Frontier Science Program (HFSP grant number RGP0018/2017 to T.B.), the European Research Council (consolidator grant numbers 772798 to K.J.C., 771201 to T.B., 647186 to G.C. and 772426 to K.F.), and the UK BBSRC (equipment grant number BB/R000042/1 to G.C. and research project grant number BB/N006402/1 to K.F.).

Author information

Authors and Affiliations

Authors

Contributions

J.R. and K.F. conceived the study. J.R. conducted all AFM experiments, analysed all AFM data and developed the model. A.D. conducted all optical imaging and traction force microscopy experiments and analysed data. B.W. and T.B. custom-designed PAA beads. N.M.K. and M.C.G. conducted and analysed ERISM measurements. K.J.C. helped with imaging and data analysis. G.C. helped with AFM experiments. All authors discussed the study. J.R. and K.F. wrote the paper with contributions from all co-authors.

Corresponding authors

Correspondence to Johannes Rheinlaender or Kristian Franze.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–10, discussion and refs. 51–56.

Reporting Summary

Supplementary Video 1

Indentation of a microglial cell cultured on a stiff substrate by AFM.

Supplementary Video 2

Indentation of a microglial cell cultured on a soft substrate by AFM.

Supplementary Video 3

Indentation of a fibroblast cultured on a stiff substrate by AFM.

Supplementary Video 4

Indentation of a fibroblast cultured on a soft substrate by AFM.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rheinlaender, J., Dimitracopoulos, A., Wallmeyer, B. et al. Cortical cell stiffness is independent of substrate mechanics. Nat. Mater. 19, 1019–1025 (2020). https://doi.org/10.1038/s41563-020-0684-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-0684-x

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing