Materials for flexible bioelectronic systems as chronic neural interfaces


Engineered systems that can serve as chronically stable, high-performance electronic recording and stimulation interfaces to the brain and other parts of the nervous system, with cellular-level resolution across macroscopic areas, are of broad interest to the neuroscience and biomedical communities. Challenges remain in the development of biocompatible materials and the design of flexible implants for these purposes, where ulimate goals are for performance attributes approaching those of conventional wafer-based technologies and for operational timescales reaching the human lifespan. This Review summarizes recent advances in this field, with emphasis on active and passive constituent materials, design architectures and integration methods that support necessary levels of biocompatibility, electronic functionality, long-term stable operation in biofluids and reliability for use in vivo. Bioelectronic systems that enable multiplexed electrophysiological mapping across large areas at high spatiotemporal resolution are surveyed, with a particular focus on those with proven chronic stability in live animal models and scalability to thousands of channels over human-brain-scale dimensions. Research in materials science will continue to underpin progress in this field of study.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Emerging classes of implantable bioelectronic platforms as neural interfaces.
Fig. 2: Active semiconductor-enabled systems and biofluid barrier materials for device longevity.
Fig. 3: Materials and engineering approaches for chronically stable, active electronic neural interfaces.
Fig. 4: High-resolution/scalable neural electronic systems for long-term bio-integration.


  1. 1.

    Fang, J. Y. & Tolleson, C. The role of deep brain stimulation in Parkinson’s disease: an overview and update on new developments. Neuropsychiatr. Dis. Treat 13, 723–732 (2017).

    CAS  Article  Google Scholar 

  2. 2.

    Wellman, S. M. et al. A materials roadmap to functional neural interface design. Adv. Funct. Mater. 28, 1701269 (2018).

    Article  CAS  Google Scholar 

  3. 3.

    Fu, T. M., Hong, G., Viveros, R. D., Zhou, T. & Lieber, C. M. Highly scalable multichannel mesh electronics for stable chronic brain electrophysiology. Proc. Natl Acad. Sci. USA 114, E10046–E10055 (2017).

    CAS  Article  Google Scholar 

  4. 4.

    Rivnay, J., Wang, H., Fenno, L., Delsseroth, K. & Mallaras, G. G. Next-generation probes, particles, and proteins for neural interfacing. Sci. Adv. 3, e1601649 (2017).

    Article  CAS  Google Scholar 

  5. 5.

    Berényi, A. et al. Large-scale, high-density (up to 512 channels. recording of local circuits in behaving animals). J. Neurophysiol. 111, 1132–1149 (2014).

    Article  Google Scholar 

  6. 6.

    Robinson, J. T. et al. Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. Nat. Nanotechnol. 7, 180–184 (2012).

    CAS  Article  Google Scholar 

  7. 7.

    Ershad, F., Sim, K., Thukral, A., Zhang, Y. S. & Yu, C. Invited article: emerging soft bioelectronics for cardiac health diagnosis and treatment. APL Mater. 7, 031301 (2019).

    Article  CAS  Google Scholar 

  8. 8.

    Gassert, R. & Dietz, V. Rehabilitation robots for the treatment of sensorimotor deficits: a neurophysiological perspective. J. Neuroeng. Rehabil. 15, 46 (2018).

    Article  Google Scholar 

  9. 9.

    Sanders, R. S. & Lee, M. T. Implantable pacemakers. Proc. IEEE 84, 480–486 (1996).

    Article  Google Scholar 

  10. 10.

    Mayberg, H. S. et al. Deep brain stimulation for treatment-resistant depression. Neuron 45, 651–660 (2005).

    CAS  Article  Google Scholar 

  11. 11.

    Rousche, P. J. & Normann, R. A. Chronic recording capability of the Utah intracortical electrode array in cat sensory cortex. J. Neurosci. Methods 82, 1–15 (1998).

    CAS  Article  Google Scholar 

  12. 12.

    Hiremath, S. V. et al. Human perception of electrical stimulation on the surface of somatosensory cortex. PLoS ONE 12, e0176020 (2017).

    Article  CAS  Google Scholar 

  13. 13.

    Vetter, R. J., Williams, J. C., Hetke, J. F., Nunamaker, E. A. & Kipke, D. R. Chronic neural recording using silicon-substrate microelectrode arrays implanted in cerebral cortex. IEEE Trans. Biomed. Eng. 51, 896–904 (2004).

    Article  Google Scholar 

  14. 14.

    Wark, H. A. C. et al. A new high-density (25 electrodes/mm2) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. J. Neural Eng. 10, 045003 (2013).

    CAS  Article  Google Scholar 

  15. 15.

    Bouton, C. E. et al. Restoring cortical control of functional movement in a human with quadriplegia. Nature 533, 247–250 (2016).

    CAS  Article  Google Scholar 

  16. 16.

    Pandarinath, C. et al. High performance communication by people with paralysis using an intracortical brain–computer interface. eLife 6, e18554 (2017).

    Article  Google Scholar 

  17. 17.

    Bai, Q., Wise, K. D. & Anderson, D. J. A high-yield microassembly structure for three-dimensional microelectrode arrays. IEEE Trans. Biomed. Eng. 47, 281–289 (2000).

    CAS  Article  Google Scholar 

  18. 18.

    Dai, X., Zhou, W., Gao, T., Liu, J. & Lieber, C. M. Three-dimensional mapping and regulation of action potential propagation in nanoelectronics innervated tissues. Nat. Nanotechnol. 11, 776–782 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Montgomery, K. L. et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 12, 969–974 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Canales, A. et al. Multifunctional fibers for simultaneous optical, electrical and chemical interrogation of neural circuits in vivo. Nat. Biotechnol. 33, 277–284 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Viventi, J. et al. A conformal, bio-interfaced class of silicon electronics for mapping cardiac electrophysiology. Sci. Transl. Med. 2, 24ra22 (2010).

    Article  CAS  Google Scholar 

  22. 22.

    Viventi, J. et al. Flexible, foldable, actively multiplexed, high-density electrode array for mapping brain activity in vivo. Nat. Neurosci. 14, 1599–1605 (2011).

    CAS  Article  Google Scholar 

  23. 23.

    Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    CAS  Article  Google Scholar 

  24. 24.

    Tian, B. et al. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes. Science 329, 830–834 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    Khodagholy, D. et al. Organic electronics for high-resolution electrocorticography of the human brain. Sci. Adv. 2, e1601027 (2016).

    Article  Google Scholar 

  26. 26.

    Park, J.-S., Chae, H., Chung, H. K. & Lee, S. I. Thin film encapsulation for flexible AM-OLED: a review. Semicond. Sci. Technol. 26, 034001 (2011).

    Article  CAS  Google Scholar 

  27. 27.

    Xie, X., Ritch, L., Mcrugu, S., Tathircddy, P. & Solzbacher, F. Plasma-assisted atomic layer deposition of Al2O3 and parylene C bi-layer encapsulation for chronic implantable electronics. Appl. Phys. Lett. 101, 093702 (2012).

    Article  CAS  Google Scholar 

  28. 28.

    Luan, L. et al. Ultraflexible nanoelectronic probes form reliable, glial scar-free neural integration. Sci. Adv. 3, e1601966 (2017).

    Article  CAS  Google Scholar 

  29. 29.

    Musk, E. An integrated brain–machine interface platform with thousands of channels. J. Med. Internet. Res 21, e16194 (2019).

    Google Scholar 

  30. 30.

    McCallum, G. A. et al. Chronic interfacing with the autonomic nervous system using carbon nanotube (CNT) yarn electrodes. Sci. Rep. 7, 11723 (2017).

    Article  CAS  Google Scholar 

  31. 31.

    Yang, X. et al. Bioinspired neuron-like electronics. Nat. Mater. 18, 510–517 (2019).

    CAS  Article  Google Scholar 

  32. 32.

    Kozai, T. D. Y. et al. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 11, 1065–1073 (2012).

    CAS  Article  Google Scholar 

  33. 33.

    Wang, L. et al. Ultrasoft and highly stretchable hydrogel optical fibers for in vivo optogenetic modulations. Adv. Opt. Mater. 6, 1800427 (2018).

    Article  CAS  Google Scholar 

  34. 34.

    Khodagholy, D. et al. NeuroGrid: recording action potentials from the surface of the brain. Nat. Neurosci. 18, 310–315 (2015).

    CAS  Article  Google Scholar 

  35. 35.

    Lee, W. et al. Nonthrombogenic, stretchable, active multielectrode array for electroanatomical mapping. Sci. Adv. 4, eaau2426 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Campana, A. et al. Electrocardiographic recording with conformable organic electrochemical transistor fabricated on resorbable bioscaffold. Adv. Mater. 26, 3874–3878 (2014).

    CAS  Article  Google Scholar 

  37. 37.

    Zhang, Y. C. et al. Climbing-inspired twining electrodes using shape memory for peripheral nerve stimulation and recording. Sci. Adv. 5, eaaw1066 (2019).

    Article  Google Scholar 

  38. 38.

    Borschel, G. H., Kia, K. F., Kuzon, W. M. Jr & Dennis, R. G. Mechanical properties of acellular peripheral nerve. J. Surg. Res. 114, 133–139 (2003).

    Article  Google Scholar 

  39. 39.

    Kim, D.-H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nat. Mater. 9, 511–517 (2012).

    Article  CAS  Google Scholar 

  40. 40.

    Liu, J. et al. Syringe-injectable electronics. Nat. Nanotechnol. 10, 629–636 (2015).

    CAS  Article  Google Scholar 

  41. 41.

    Yan, Z. et al. Three-dimensional mesostructures as high-temperature growth templates, electronic cellular scaffolds, and self-propelled microrobots. Proc. Natl Acad. Sci. USA 114, E9455–E9464 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    Bhunia, S., Majerus, S. & Sawan, M. Implantable Biomedical Microsystems: Design Principles and Applications (Elsevier, 2015).

  43. 43.

    Johnson, L. A. et al. Direct electrical stimulation of the somatosensory cortex in humans using electrocorticography electrodes: a qualitative and quantitative report. J. Neural. Eng. 10, 036021 (2013).

    CAS  Article  Google Scholar 

  44. 44.

    Waziri, A. et al. Initial surgical experience with a dense cortical microarray in epileptic patients undergoing craniotomy for subdural electrode implantation. Neurosurgery 64, 540–545 (2009).

    Article  Google Scholar 

  45. 45.

    Khodagholy, D. et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 4, 1575 (2013).

    Article  CAS  Google Scholar 

  46. 46.

    Kaltenbrunner, M. et al. An ultra-lightweight design for imperceptible plastic electronics. Nature 499, 458–463 (2013).

    CAS  Article  Google Scholar 

  47. 47.

    Jun, J. J. et al. Fully integrated silicon probes for high-density recording of neural activity. Nature 551, 232–236 (2017).

    CAS  Article  Google Scholar 

  48. 48.

    Lopez, C. M. et al. An implantable 455-active-electrode 52-channel CMOS neural probe. IEEE J. Solid-State Circuits 49, 248–261 (2014).

    Article  Google Scholar 

  49. 49.

    Tian, B. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nat. Mater. 11, 986–994 (2012).

    CAS  Article  Google Scholar 

  50. 50.

    Xie, C. et al. Three-dimensional macroporous nanoelectronic networks as minimally invasive brain probes. Nat. Mater. 14, 1286–1293 (2015).

    CAS  Article  Google Scholar 

  51. 51.

    Patel, S. R. & Lieber, C. M. Precision electronic medicine in the brain. Nat. Biotechnol. 37, 1007–1012 (2019).

    CAS  Article  Google Scholar 

  52. 52.

    Escabi, M. A. et al. A high-density, high-channel count, multiplexed mu ECoG array for auditory-cortex recordings. J. Neurophysiol. 112, 1566–1583 (2014).

    Article  Google Scholar 

  53. 53.

    Hwang, G.-T. et al. In vivo silicon-based flexible radio frequency integrated circuits monolithically encapsulated with biocompatible liquid crystal polymers. ACS Nano 7, 4545–4553 (2013).

    CAS  Article  Google Scholar 

  54. 54.

    Sim, K., Rao, Z., Li, Y., Yang, D. & Yu, C. Curvy surface conformal ultra-thin transfer printed Si optoelectronic penetrating microprobe arrays. npj Flex. Electron 2, 2 (2018).

    Google Scholar 

  55. 55.

    Paetzold, R., Winnacker, A., Henseler, D., Cesari, V. & Heuser, K. Permeation rate measurements by electrical analysis of calcium corrosion. Rev. Sci. Instrum. 74, 5147–5150 (2003).

    CAS  Article  Google Scholar 

  56. 56.

    Choi, M.-C., Kim, Y. & Ha, C.-S. Polymers for flexible displays: from material selection to device applications. Prog. Polym. Sci. 33, 581–630 (2008).

    CAS  Article  Google Scholar 

  57. 57.

    Debeaufort, F., Voilley, A. & Meares, P. Water vapor permeability and diffusivity through methylcelluloseedible films. J. Membrane. Sci. 91, 125–133 (1994).

    CAS  Article  Google Scholar 

  58. 58.

    Ahmad, J., Bazaka, K., Anderson, L. J., White, R. D. & Jacob, M. V. Materials and methods for encapsulation of OPV: a review. Renew. Sustain. Energy Rev 27, 104–117 (2013).

    CAS  Article  Google Scholar 

  59. 59.

    McKeen, L. W. Permeability Properties of Plastics and Elastomers (Elsevier, 2016).

  60. 60.

    Groner, M. D., George, S. M., McLean, R. S. & Carcia, P. F. Gas diffusion barriers on polymers using Al2O3 atomic layer deposition. Appl. Phys. Lett. 88, 051907 (2006).

    Article  CAS  Google Scholar 

  61. 61.

    Yasuda, H. & Stannett, V. Permeation, solution, and diffusion of water in some high polymers. J. Polym. Sci. 57, 907–923 (1962).

    CAS  Article  Google Scholar 

  62. 62.

    Feng, J., Berger, K. R. & Douglas, E. P. Water vapor transport in liquid crystalline and non-liquid crystalline epoxies. J. Mater. Sci. 39, 3413–3423 (2004).

    CAS  Article  Google Scholar 

  63. 63.

    Barrie, J. A. & Machin, D. The sorption and diffusion of water in silicone rubbers. Part II. Filled rubbers. J. Macromol. Sci. B 3, 673–692 (1969).

    CAS  Article  Google Scholar 

  64. 64.

    Davis, E. M., Benetators, N. M., Regnault, W. F., Winey, K. I. & Elabd, Y. A. The influence of thermal history on structure and water transport in parylene C coatings. Polymer 52, 5378–5386 (2011).

    CAS  Article  Google Scholar 

  65. 65.

    Seo, S.-W. et al. Moisture permeation through ultrathin TiO2 films grown by atomic layer deposition. Appl. Phys. Express 5, 035701 (2012).

    Article  CAS  Google Scholar 

  66. 66.

    Nagai, S. Approximation of effective moisture-diffusion coefficient to characterize performance of a barrier coating. J. Appl. Phys. 114, 174302 (2013).

    Article  CAS  Google Scholar 

  67. 67.

    Yu, D., Yang, Y.-Q., Chen, Z., Tao, Y. & Liu, Y.-F. Recent progress on thin-film encapsulation technologies for organic electronic devices. Opt. Commun. 362, 43–49 (2016).

    CAS  Article  Google Scholar 

  68. 68.

    Meyer, J. et al. Al2O3/ZrO2 nanolaminates as ultrahigh gas-diffusion barriers — a strategy for reliable encapsulation of organic electronics. Adv. Mater. 21, 1845–1849 (2009).

    CAS  Article  Google Scholar 

  69. 69.

    Fang, H. et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 1, 0038 (2017).

    CAS  Article  Google Scholar 

  70. 70.

    Lopez, C. M. et al. A neural probe with up to 966 electrodes and up to 384 configurable channels in 0.13 μm SOI CMOS. IEEE Trans. Biomed. Circuits Syst. 11, 510–522 (2017).

    Article  Google Scholar 

  71. 71.

    Song, E., Li, J. & Rogers, J. A. Barrier materials for flexible bioelectronic implants with chronic stability-current approaches and future directions. APL Mater. 7, 050902 (2019).

    Article  CAS  Google Scholar 

  72. 72.

    Oehler, A. & Tomozawa, M. Water diffusion into silica glass at a low temperature under high water vapor pressure. J. Non. Cryst. Solids 347, 211–219 (2004).

    CAS  Article  Google Scholar 

  73. 73.

    Lin, Y., Tsui, T. Y. & Vlassak, J. J. Water diffusion and fracture in organosilicate galss film stacks. Acta Mater. 55, 2455–2464 (2007).

    CAS  Article  Google Scholar 

  74. 74.

    Fang, H. et al. Ultrathin, transferred layers of thermally grown silicon dioxide as biofluid barriers for biointegrated flexible electronic systems. Proc. Natl Acad. Sci. USA 113, 11682–11687 (2016).

    CAS  Article  Google Scholar 

  75. 75.

    Song, E. et al. Thin, transferred layers of silicon dioxide and silicon nitride as water and ion barriers for implantable flexible electronic systems. Adv. Electron. Mater. 3, 1700077 (2017).

    Article  CAS  Google Scholar 

  76. 76.

    Song, E. et al. Ultrathin trilayer assemblies as long-lived barriers against water and ion penetration in flexible bioelectronic systems. ACS Nano 12, 10317–10326 (2018).

    CAS  Article  Google Scholar 

  77. 77.

    Li, J. et al. Conductively coupled flexible silicon electronic systems for chronic neural electrophysiology. Proc. Natl Acad. Sci. USA 115, E9542–E9549 (2018).

    CAS  Article  Google Scholar 

  78. 78.

    Lee, Y. K. et al. Dissolution of monocrystalline silicon nanomembranes and their use as encapsulation layers and electrical interfaces in water-soluble electronics. ACS Nano 11, 12562–12572 (2017).

    CAS  Article  Google Scholar 

  79. 79.

    Li, J. et al. Ultrathin, transferred layers of metal silicide as faradaic electrical interfaces and biofluid barriers for flexible bioelectronic implants. ACS Nano 13, 660–670 (2019).

    CAS  Article  Google Scholar 

  80. 80.

    Cogan, S. F., Edell, D. J., Guzelian, A. A., Liu, Y. P. & Edell, R. Plasma-enhanced chemical vapor deposited silicon carbide as an implantable dielectric coating. J. Biomed. Mater. Res. A 67a, 856–867 (2003).

    CAS  Article  Google Scholar 

  81. 81.

    Knaack, G. L. et al. In vivo characterization of amorphous silicon carbide as a biomaterial for chronic neural interfaces. Front. Neurosci. 10, 301 (2016).

    Article  Google Scholar 

  82. 82.

    Lei, X. et al. SiC protective coating for photovoltaic retinal prosthesis. J. Neural. Eng 13, 046016 (2016).

    Google Scholar 

  83. 83.

    Phan, H.-P. et al. Long-lived, transferred crystalline silicon carbide nanomembranes for implantable flexible electronics. ACS Nano 13, 11572–11581 (2019).

    CAS  Article  Google Scholar 

  84. 84.

    Hollenberg, B. A., Richards, C. D., Richards, R., Bahr, D. F. & Rector, D. M. A MEMS fabricated flexible electrode array for recording surface field potentials. J. Neurosci. Methods 153, 147–153 (2006).

    Article  Google Scholar 

  85. 85.

    Benison, A. M., Rector, D. M. & Barth, D. S. Hemispheric mapping of secondary somatosensory cortex in the rat. J. Neurophysiol. 97, 200–207 (2007).

    Article  Google Scholar 

  86. 86.

    Molina-Luna, K. et al. Cortical stimulation mapping using epidurally implanted thin-film microelectrode arrays. J. Neurosci. Methods 161, 118–125 (2007).

    Article  Google Scholar 

  87. 87.

    Kim, J., Wilson, J. A. & Williams, J. C. A cortical recording platform utilizing μECoG electrode arrays. In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society 5353–5357 (IEEE, 2007).

  88. 88.

    Rubehn, B., Bosman, C., Oostenveld, R., Fries, P. & Stieglitz, T. A MEMS-based flexible multichannel ECoG-electrode array. J. Neural Eng. 6, 036003 (2009).

    Article  Google Scholar 

  89. 89.

    Ledochowitsch, P. et al. Fabrication and testing of a large area, high density, parylene MEMS µECoG array. In 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems 1031–1034 (IEEE, 2011).

  90. 90.

    Besle, J. et al. Tuning of the human neocortex to the temporal dynamics of attended events. J. Neurosci. 31, 3176–3185 (2011).

    CAS  Article  Google Scholar 

  91. 91.

    Pasley, B. N. et al. Reconstructing speech from human auditory cortex. PLoS Biol. 10, e1001251 (2012).

    CAS  Article  Google Scholar 

  92. 92.

    Hotson, G. et al. Individual finger control of a modular prosthetic limb using high-density electrocorticography in a human subject. J. Neural Eng. 13, 026017 (2016).

    Article  Google Scholar 

  93. 93.

    Kellis, S. et al. Multi-scale analysis of neural activity in humans: implications for micro-scale electrocorticography. Clin. Neurophysiol. 127, 591–601 (2016).

    Article  Google Scholar 

  94. 94.

    Kaiju, T. et al. High spatiotemporal resolution ECoG recording of somatosensory evoked potentials with flexible micro-electrode arrays. Front. Neural Circuits 11, 20 (2017).

    Article  Google Scholar 

  95. 95.

    Chiang, C.-H. et al. The neural matrix: kiloscale neural interfaces for long-term recording. Sci. Transl. Med. 12, eaay4682 (2020).

    Article  Google Scholar 

  96. 96.

    Song, E. et al. Flexible electronic/optoelectronic microsystems with scalable designs for chronic biointegration. Proc. Natl Acad. Sci. USA 116, 15398–15406 (2019).

    CAS  Article  Google Scholar 

  97. 97.

    Lee, W. et al. Transparent, conformable, active multielectrode array using organic electrochemical transistors. Proc. Natl Acad. Sci. USA 114, 10554–10559 (2017).

    CAS  Article  Google Scholar 

  98. 98.

    Yu, K. J. et al. Bioresorbable silicon electronics for transient spatiotemporal mapping of electrical activity from the cerebral cortex. Nat. Mater. 15, 782–791 (2016).

    CAS  Article  Google Scholar 

Download references


We acknowledge support from the Querrey Simpson Institute for Bioelectronics at Northwestern University.

Author information



Corresponding author

Correspondence to John A. Rogers.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, E., Li, J., Won, S.M. et al. Materials for flexible bioelectronic systems as chronic neural interfaces. Nat. Mater. 19, 590–603 (2020).

Download citation