Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dipolar interactions between localized interlayer excitons in van der Waals heterostructures


Although photons in free space barely interact, matter can mediate interactions between them resulting in optical nonlinearities. Such interactions at the single-quantum level result in an on-site photon repulsion, crucial for photon-based quantum information processing and for realizing strongly interacting many-body states of light. Here, we report repulsive dipole–dipole interactions between electric field-tuneable, localized interlayer excitons in the MoSe2/WSe2 heterobilayer. The presence of a single, localized exciton with an out-of-plane, non-oscillating dipole moment increases the energy of the second excitation by ~2 meV—an order of magnitude larger than the emission linewidth and corresponding to an inter-dipole distance of ~7 nm. At higher excitation power, multi-exciton complexes appear at systematically higher energies. The magnetic field dependence of the emission polarization is consistent with the spin-valley singlet nature of the dipolar molecular state. Our finding represents a step towards the creation of excitonic few- and many-body states such as dipolar crystals with spin-valley spinor in van der Waals heterostructures.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Interlayer exciton dipoles in MoSe2/WSe2 heterostructure.
Fig. 2: Excitons from MoSe2/WSe2 heterostructure at low temperature (~4 K).
Fig. 3: Signatures of localized interlayer biexcitons.
Fig. 4: Spin-valley structure of localized interlayer excitons and biexcitons under magnetic field.

Data availability

The data represented in Figs. 24 are provided with the paper as source data. All other data that support results in this article are available from the corresponding author on reasonable request.


  1. 1.

    Chernikov, A. et al. Exciton binding energy and non-hydrogenic rydberg series in monolayer WS2. Phys. Rev. Lett. 113, 076802 (2014).

    Article  CAS  Google Scholar 

  2. 2.

    He, K. et al. Tightly bound excitons in monolayer WSe2. Phys. Rev. Lett. 113, 026803 (2014).

    Article  CAS  Google Scholar 

  3. 3.

    Rivera, P. et al. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6, 6242 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    Tran, K. et al. Evidence for moiré excitons in van der Waals heterostructures. Nature 567, 71–75 (2019).

    CAS  Article  Google Scholar 

  5. 5.

    Rivera, P. et al. Valley-polarized exciton dynamics in a 2D semiconductor heterostructure. Science 351, 688–691 (2016).

    CAS  Article  Google Scholar 

  6. 6.

    Fogler, M. M., Butov, L. V. & Novoselov, K. S. High-temperature superfluidity with indirect excitons in van der Waals heterostructures. Nat. Commun. 5, 4555 (2014).

    CAS  Article  Google Scholar 

  7. 7.

    Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    CAS  Article  Google Scholar 

  8. 8.

    Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunnelling and blockade. Nat. Phys. 4, 859–863 (2008).

    CAS  Article  Google Scholar 

  9. 9.

    Imamoğlu, A., Schmidt, H., Woods, G. & Deutsch, M. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467–1470 (1997).

    Article  Google Scholar 

  10. 10.

    Chang, D. E., Vuletić, V. & Lukin, M. D. Quantum nonlinear optics—photon by photon. Nat. Photon. 8, 685–694 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85, 299–366 (2013).

    Article  Google Scholar 

  12. 12.

    Chang, D. et al. Crystallization of strongly interacting photons in a nonlinear optical fibre. Nat. Phys. 4, 884–889 (2008).

    CAS  Article  Google Scholar 

  13. 13.

    Lukin, M. et al. Dipole blockade and quantum information processing in mesoscopic atomic ensembles. Phys. Rev. Lett. 87, 037901 (2001).

    CAS  Article  Google Scholar 

  14. 14.

    Rabl, P. & Zoller, P. Molecular dipolar crystals as high-fidelity quantum memory for hybrid quantum computing. Phys. Rev. A. 76, 042308 (2007).

    Article  CAS  Google Scholar 

  15. 15.

    Lahaye, T., Menotti, C., Santos, L., Lewenstein, M. & Pfau, T. The physics of dipolar bosonic quantum gases. Rep. Prog. Phys. 72, 126401 (2009).

    Article  CAS  Google Scholar 

  16. 16.

    Ciarrocchi, A. et al. Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures. Nat. Photon. 13, 131–136 (2019).

    CAS  Article  Google Scholar 

  17. 17.

    Nagler, P. et al. Interlayer exciton dynamics in a dichalcogenide monolayer heterostructure. 2D Mater. 4, 025112 (2017).

    Article  CAS  Google Scholar 

  18. 18.

    Srivastava, A. et al. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491–496 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    Koperski, M. et al. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503–506 (2015).

    CAS  Article  Google Scholar 

  20. 20.

    Chakraborty, C., Kinnischtzke, L., Goodfellow, K. M., Beams, R. & Vamivakas, A. N. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507–511 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    He, Y.-M. et al. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497–502 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Tonndorf, P. et al. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2, 347–352 (2015).

    CAS  Article  Google Scholar 

  23. 23.

    Atatüre, M., Englund, D., Vamivakas, N., Lee, S.-Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38–51 (2018).

    Article  CAS  Google Scholar 

  24. 24.

    Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    CAS  Article  Google Scholar 

  25. 25.

    Lu, X. et al. Optical initialization of a single spin-valley in charged WSe2 quantum dots. Nat. Nanotechnol. 14, 426–431 (2019).

    CAS  Article  Google Scholar 

  26. 26.

    Brotons-Gisbert, M. et al. Coulomb blockade in an atomically thin quantum dot coupled to a tunable fermi reservoir. Nat. Nanotechnol. 14, 442–446 (2019).

    CAS  Article  Google Scholar 

  27. 27.

    Seyler, K. L. et al. Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers. Nature 567, 66–70 (2019).

    CAS  Article  Google Scholar 

  28. 28.

    Saffman, M., Walker, T. G. & Mølmer, K. Quantum information with Rydberg atoms. Rev. Mod. Phys. 82, 2313–2363 (2010).

    CAS  Article  Google Scholar 

  29. 29.

    Rivera, P. et al. Interlayer valley excitons in heterobilayers of transition metal dichalcogenides. Nat. Nanotechnol. 13, 1004–1015 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    Schaibley, J. R. et al. Directional interlayer spin-valley transfer in two-dimensional heterostructures. Nat. Commun. 7, 13747 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Branny, A. et al. Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics, and charge tuning. Appl. Phys. Lett. 108, 142101 (2016).

    Article  CAS  Google Scholar 

  32. 32.

    Wang, Z., Chiu, Y.-H., Honz, K., Mak, K. F. & Shan, J. Electrical tuning of interlayer exciton gases in WSe2 bilayers. Nano Lett. 18, 137–143 (2018).

    CAS  Article  Google Scholar 

  33. 33.

    He, Y.-M. et al. Cascaded emission of single photons from the biexciton in monolayered WSe2. Nat. Commun. 7, 13409 (2016).

    CAS  Article  Google Scholar 

  34. 34.

    Schinner, G. J. et al. Confinement and interaction of single indirect excitons in a voltage-controlled trap formed inside double InGaAs quantum wells. Phys. Rev. Lett. 110, 127403 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    Wu, F., Lovorn, T., Tutuc, E. & MacDonald, A. H. Hubbard model physics in transition metal dichalcogenide moiré bands. Phys. Rev. Lett. 121, 026402 (2018).

    CAS  Article  Google Scholar 

  36. 36.

    Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    CAS  Article  Google Scholar 

  37. 37.

    Yu, H., Liu, G.-B., Tang, J., Xu, X. & Yao, W. Moiré excitons: from programmable quantum emitter arrays to spin-orbit–coupled artificial lattices. Sci. Adv. 3, e1701696 (2017).

    Article  CAS  Google Scholar 

  38. 38.

    Wu, F., Lovorn, T. & MacDonald, A. Theory of optical absorption by interlayer excitons in transition metal dichalcogenide heterobilayers. Phys. Rev. B. 97, 035306 (2018).

    CAS  Article  Google Scholar 

  39. 39.

    Luo, Y. et al. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 13, 1137–1142 (2018).

    CAS  Article  Google Scholar 

  40. 40.

    Tripathi, L. N. et al. Spontaneous emission enhancement in strain-induced WSe2 monolayer-based quantum light sources on metallic surfaces. ACS Photonics 5, 1919–1926 (2018).

    CAS  Article  Google Scholar 

  41. 41.

    Cai, T. et al. Radiative enhancement of single quantum emitters in WSe2 monolayers using site-controlled metallic nanopillars. ACS Photonics 5, 3466–3471 (2018).

    CAS  Article  Google Scholar 

  42. 42.

    Huber, D. et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand. Phys. Rev. Lett. 121, 033902 (2018).

    CAS  Article  Google Scholar 

  43. 43.

    Alexeev, E. M. et al. Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures. Nature 567, 81–86 (2019).

    CAS  Article  Google Scholar 

  44. 44.

    Hsu, W.-T. et al. Tailoring excitonic states of van der Waals bilayers through stacking configuration, band alignment, and valley spin. Sci. Adv. 5, eaax7407 (2019).

    Article  Google Scholar 

  45. 45.

    Kremser, M. et al. Discrete interactions between a few interlayer excitons trapped at a MoSe2-WSe2 heterointerface. Preprint at (2019).

Download references


We thank A. Imamoğlu and M. Kroner for many enlightening discussions. We also thank R. Lemasters and H. Harutyunyan for assistance with atomic layer deposition. A.S. acknowledges support from the National Science Foundation through the EFRI programme, grant no. EFMA-1741691 and National Science Foundation DMR award no. 1905809.

Author information




A.S., W.L., X.L. and S.D. conceived the project. W.L., X.L., S.D. and L.D. carried out the measurements. W.L. performed the theoretical calculations. X.L., S.D. and L.D. prepared the samples. A.S. supervised the project. All authors were involved in analysis of the experimental data and contributed extensively to this work.

Corresponding author

Correspondence to Ajit Srivastava.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Notes 1–6 and Table 1.

Source data

Source Data Fig. 2

Raw data for Fig. 2.

Source Data Fig. 3

Raw data for Fig. 3.

Source Data Fig. 4

Raw data for Fig. 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, W., Lu, X., Dubey, S. et al. Dipolar interactions between localized interlayer excitons in van der Waals heterostructures. Nat. Mater. 19, 624–629 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing