Abstract
Harvesting environmental energy to generate electricity is a key scientific and technological endeavour of our time. Photovoltaic conversion and electromechanical transduction are two common energy-harvesting mechanisms based on, respectively, semiconducting junctions and piezoelectric insulators. However, the different material families on which these transduction phenomena are based complicate their integration into single devices. Here we demonstrate that halide perovskites, a family of highly efficient photovoltaic materials1,2,3, display a photoflexoelectric effect whereby, under a combination of illumination and oscillation driven by a piezoelectric actuator, they generate orders of magnitude higher flexoelectricity than in the dark. We also show that photoflexoelectricity is not exclusive to halides but a general property of semiconductors that potentially enables simultaneous electromechanical and photovoltaic transduction and harvesting in unison from multiple energy inputs.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Coupling Enhancement of a Flexible BiFeO3 Film-Based Nanogenerator for Simultaneously Scavenging Light and Vibration Energies
Nano-Micro Letters Open Access 06 October 2022
-
Bond engineering of molecular ferroelectrics renders soft and high-performance piezoelectric energy harvesting materials
Nature Communications Open Access 24 September 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout




Data availability
The data represented in Figs. 1, 2c,d, 3 and 4 are provided with the paper as source data. Other datasets generated and/or analysed during the current study are available from L.S. on reasonable request.
References
Kojima, A. et al. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).
Burschka, J. et al. Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499, 316–319 (2013).
Li, W. et al. Chemically diverse and multifunctional hybrid organic–inorganic perovskites. Nat. Rev. Mater. 2, 16099 (2017).
Kogan, S. M. Piezoelectric effect during inhomogeneous deformation and acoustic scattering of carriers in crystals. Sov. Phys. Solid State 5, 2069–2070 (1964).
Bursian, E. & Zaikovskii, O. I. Changes in curvature of ferroelectric film due to polarization. Sov. Phys. Solid State 10, 1121–1124 (1968).
Tagantsev, A. K. Piezoelectricity and flexoelectricity in crystalline dielectrics. Phys. Rev. B 34, 5883–5889 (1986).
Zubko, P., Catalan, G. & Tagantsev, A. K. Flexoelectric effect in solids. Annu. Rev. Mater. Res. 43, 387–421 (2013).
Majdoub, M. S., Sharma, P. & Cagin, T. Enhanced size-dependent piezoelectricity and elasticity in nanostructures due to the flexoelectric effect. Phys. Rev. B 77, 125424 (2008).
Lee, D. et al. Giant flexoelectric effect in ferroelectric epitaxial thin films. Phys. Rev. Lett. 107, 057602 (2011).
Lu, H. et al. Mechanical writing of ferroelectric polarization. Science 336, 59–61 (2012).
Bhaskar, U. K. et al. A flexoelectric microelectromechanical system on silicon. Nat. Nanotechnol. 11, 263–266 (2016).
Narvaez, J., Vasquez-Sancho, F. & Catalan, G. Enhanced flexoelectric-like response in oxide semiconductors. Nature 538, 219–221 (2016).
Yang, M.-M., Kim, D. J. & Alexe, M. Flexo-photovoltaic effect. Science 360, 904–907 (2018).
Nie, W. et al. Light-activated photocurrent degradation and self-healing in perovskite solar cells. Nat. Commun. 7, 11574 (2016).
Rakita, Y. et al. Tetragonal CH3NH3PbI3 is ferroelectric. Proc. Natl Acad. Sci. USA 114, E5504–E5512 (2017).
Liu, Y. et al. Two-inch-sized perovskite CH3NH3PbX3 (X = Cl, Br, I) crystals: growth and characterization. Adv. Mater. 27, 5176–5183 (2015).
Zhu, W., Fu, J. Y., Li, N. & Cross, L. Piezoelectric composite based on the enhanced flexoelectric effects. Appl. Phys. Lett. 89, 192904 (2006).
Stengel, M. Surface control of flexoelectricity. Phys. Rev. B 90, 201112 (2014).
Biancoli, A., Fancher, C. M., Jones, J. L. & Damjanovic, D. Breaking of macroscopic centric symmetry in paraelectric phases of ferroelectric materials and implications for flexoelectricity. Nat. Mater. 14, 224–229 (2015).
Abdollahi, A., Vásquez-Sancho, F. & Catalan, G. Piezoelectric mimicry of flexoelectricity. Phys. Rev. Lett. 121, 205502 (2018).
Wen, X. et al. Flexoelectret: an electret with a tunable flexoelectriclike response. Phys. Rev. Lett. 122, 148001 (2019).
Vales-Castro, P. et al. Flexoelectricity in antiferroelectrics. Appl. Phys. Lett. 113, 132903 (2018).
Xiao, Z. et al. Giant switchable photovoltaic effect in organometal trihalide perovskite devices. Nat. Mater. 14, 193–198 (2015).
Hoke, E. T. et al. Reversible photo-induced trap formation in mixed-halide hybrid perovskites for photovoltaics. Chem. Sci. 6, 613–617 (2015).
Xing, J. et al. Ultrafast ion migration in hybrid perovskite polycrystalline thin films under light and suppression in single crystals. Phys. Chem. Chem. Phys. 18, 30484–30490 (2016).
Juarez-Perez, E. J. et al. Photoinduced giant dielectric constant in lead halide perovskite solar cells. J. Phys. Chem. Lett. 5, 2390–2394 (2014).
Pintilie, L. & Alexe, M. Ferroelectric-like hysteresis loop in nonferroelectric systems. Appl. Phys. Lett. 87, 112903 (2005).
Pierret, R. F. Semiconductor Device Fundamentals 213–214 (Addison-Wesley, 1996).
Liu, Y., Yang, Q., Zhang, Y., Yang, Z. & Wang, Z. L. Nanowire piezo-phototronic photodetector: theory and experimental design. Adv. Mater. 24, 1410–1417 (2012).
Meirzadeh, E. et al. Surface pyroelectricity in cubic SrTiO3. Adv. Mat. 31, 1904733 (2019).
Catalan, G. & Noheda, B. Surface polarization feels the heat. Nature 575, 600–602 (2019).
Marinov, Y. et al. Photoflexoelectric effects in a homeotropic guest-host nematic. Europhys. Lett. 41, 513–518 (1998).
Weddell, A. S. et al. A survey of multi-source energy harvesting systems. In 2013 Design, Automation & Test in Europe Conference & Exhibition (DATE) 905–908 (IEEE, 2013).
Acknowledgements
This work was supported by the National Natural Science Foundation of China under grant nos. 51962020, 51972157, 11574126 and 11604135, and partly by the National Key Research and Development Plan of China (2017YFB0406300). L.S. and S.K. thank Nanchang University for support. G.C. acknowledges support from the Generalitat de Catalunya (Grant 2017 SGR 579) and from MINECO (National Plan MAT2016-77100-C2-1-P and Severo Ochoa SEV-2017-0706). M.S. acknowledges the support of MINECO through grants no. MAT2016-77100-C2-2-P and no. SEV-2015-0496, Generalitat de Catalunya (grant no. 2017 SGR1506) and the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant no. 724529). We thank D Torres for the graphic design of Fig. 2a,b.
Author information
Authors and Affiliations
Contributions
G.C. and L.S. conceived the idea and coordinated this work. M.S. produced the theoretical model. G.C. wrote the paper. L.S., S.K., L.F., W.H., Z.W. and J.G. prepared the samples and performed the photoflexoelectric experiments. X.J., L.W., S.L., F.L., Z.R., R.-K.Z., X.Y., Y.Z. and Y.W. made the other experimental measurements and joined the discussions.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–13, Table 1 and refs. 1–13.
Source data
Source Data Fig. 1
Experimental data points of Fig. 1a–d.
Source Data Fig. 2
Experimental data points of Fig. 2c,d.
Source Data Fig. 3
Experimental data points of Fig. 3a–d.
Source Data Fig. 4
Experimental data points of Fig. 4a and literature data of Fig. 4b.
Rights and permissions
About this article
Cite this article
Shu, L., Ke, S., Fei, L. et al. Photoflexoelectric effect in halide perovskites. Nat. Mater. 19, 605–609 (2020). https://doi.org/10.1038/s41563-020-0659-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-020-0659-y
This article is cited by
-
Electro-mechanical responses of transversely isotropic piezoelectric nano-plate based on the nonlocal strain gradient theory with flexoelectric effect
Acta Mechanica (2023)
-
Flexoelectricity-enhanced photovoltaic effect in trapezoid-shaped NaNbO3 nanotube array composites
Nano Research (2023)
-
Flexo-photocatalysis in centrosymmetric semiconductors
Nano Research (2023)
-
Optical waveguide in curved and welded perovskite nanowires
Science China Technological Sciences (2023)
-
Bond engineering of molecular ferroelectrics renders soft and high-performance piezoelectric energy harvesting materials
Nature Communications (2022)