Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • News & Views
  • Published:

THERMAL CONDUCTIVITY

Achieving a better heat conductor

Finding a competitor for diamond as a good heat conductor remains challenging. Measurements on crystals of cubic boron nitride demonstrate a thermal conductivity of 1,600 W m−1 K−1 at room temperature, rivalling diamond.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Thermal conductivity scaling with strength of bonding and average mass in crystal, and the role of different phonon scattering processes in boron-containing materials.

References

  1. Slack, G. J. Phys. Chem. Solids 34, 321–335 (1973).

    Article  CAS  Google Scholar 

  2. Lindsay, L., Broido, D. A. & Reinecke, T. L. Phys. Rev. Lett. 111, 025901 (2013).

    Article  CAS  Google Scholar 

  3. Li, S. et al. Science 361, 579–581 (2018).

    Article  CAS  Google Scholar 

  4. Tian, F. et al. Science 361, 582–585 (2018).

    Article  CAS  Google Scholar 

  5. Kang, J. S. et al. Science 361, 575–578 (2018).

    Article  CAS  Google Scholar 

  6. Chen, K. et al. Science 367, 555–559 (2020).

    Article  CAS  Google Scholar 

  7. Inyushkin, A. V. et al. Semicond. Sci. Tech. 18, 685–688 (2003).

    Article  CAS  Google Scholar 

  8. Ozhogin, V. I. et al. J. Exp. Theor. Phys. Lett. 63, 490–494 (1996).

    Article  Google Scholar 

  9. Zheng, Q. et al. Phys. Rev. Mater. 3, 014601 (2019).

    Article  CAS  Google Scholar 

  10. Inyushkin, A. V., Taldenkov, A. N., Gibin, A. M., Gusev, A. V. & Pohl, H.-J. Phys. Status Solidi C 1, 2995–2998 (2004).

    Article  CAS  Google Scholar 

  11. Anthony, T. R. et al. Phys. Rev. B 42, 1104–1111 (1990).

    Article  CAS  Google Scholar 

  12. Slack, G. A., Tanzilli, R. A., Pohl, R. O. & Vandersande, J. W. J. Phys. Chem. Solids 48, 641–647 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick E. Hopkins.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giri, A., Hopkins, P.E. Achieving a better heat conductor. Nat. Mater. 19, 482–484 (2020). https://doi.org/10.1038/s41563-020-0658-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-0658-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing