Charge transport in high-mobility conjugated polymers and molecular semiconductors


Conjugated polymers and molecular semiconductors are emerging as a viable semiconductor technology in industries such as displays, electronics, renewable energy, sensing and healthcare. A key enabling factor has been significant scientific progress in improving their charge transport properties and carrier mobilities, which has been made possible by a better understanding of the molecular structure–property relationships and the underpinning charge transport physics. Here we aim to present a coherent review of how we understand charge transport in these high-mobility van der Waals bonded semiconductors. Specific questions of interest include estimates for intrinsic limits to the carrier mobilities that might ultimately be achievable; a discussion of the coupling between charge and structural dynamics; the importance of molecular conformations and mesoscale structural features; how the transport physics of conjugated polymers and small molecule semiconductors are related; and how the incorporation of counterions in doped films—as used, for example, in bioelectronics and thermoelectric devices—affects the electronic structure and charge transport properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Most commonly observed molecular packings in crystals of molecular OSCs and corresponding benchmark materials.
Fig. 2: Experimental characterization of charge transport in molecular crystals.
Fig. 3: Charge transport in small-molecule and conjugated-polymer semiconductors.
Fig. 4: Characteristics of charge transport in conjugated polymers.


  1. 1.

    Guo, X. et al. Current status and opportunities of organic thin-film transistor technologies. IEEE Trans. Electron Devices 64, 1906–1921 (2017).

    CAS  Google Scholar 

  2. 2.

    Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).

    CAS  Google Scholar 

  3. 3.

    Russ, B., Glaudell, A., Urban, J. J., Chabinyc, M. L. & Segalman, R. A. Organic thermoelectric materials for energy harvesting and temperature control. Nat. Rev. Mater. 1, 16050 (2016).

    CAS  Google Scholar 

  4. 4.

    van de Burgt, Y., Melianas, A., Keene, S. T., Malliaras, G. & Salleo, A. Organic electronics for neuromorphic computing. Nat. Electron. 1, 386–397 (2018).

    Google Scholar 

  5. 5.

    Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    CAS  Google Scholar 

  6. 6.

    Choi, H. H., Cho, K., Frisbie, C. D., Sirringhaus, H. & Podzorov, V. Critical assessment of charge mobility extraction in FETs. Nat. Mater. 17, 2–7 (2017).

    Google Scholar 

  7. 7.

    Liu, C. et al. Device physics of contact issues for the overestimation and underestimation of carrier mobility in field-effect transistors. Phys. Rev. Appl. 8, 034020 (2017).

    Google Scholar 

  8. 8.

    Dong, H., Fu, X., Liu, J., Wang, Z. & Hu, W. 25th anniversary article: key points for high-mobility organic field-effect transistors. Adv. Mater. 25, 6158–6183 (2013).

    CAS  Google Scholar 

  9. 9.

    Zhao, Y., Guo, Y. & Liu, Y. 25th anniversary article: recent advances in n-type and ambipolar organic field-effect transistors. Adv. Mater. 25, 5372–5391 (2013).

    CAS  Google Scholar 

  10. 10.

    Mitsui, C. et al. High-performance solution-processable N-shaped organic semiconducting materials with stabilized crystal phase. Adv. Mater. 26, 4546–4551 (2014).

    CAS  Google Scholar 

  11. 11.

    Schweicher, G. et al. Bulky end-capped [1]benzothieno[3,2-b]benzothiophenes: reaching high-mobility organic semiconductors by fine tuning of the crystalline solid-state order. Adv. Mater. 27, 3066–3072 (2015).

    CAS  Google Scholar 

  12. 12.

    Podzorov, V. et al. Intrinsic charge transport on the surface of organic semiconductors. Phys. Rev. Lett. 93, 086602 (2004).

    CAS  Google Scholar 

  13. 13.

    Schweicher, G., Olivier, Y., Lemaur, V. & Geerts, Y. H. What currently limits charge carrier mobility in crystals of molecular semiconductors? Isr. J. Chem. 54, 595–620 (2014).

    CAS  Google Scholar 

  14. 14.

    MacHida, S. I. et al. Highest-occupied-molecular-orbital band dispersion of rubrene single crystals as observed by angle-resolved ultraviolet photoelectron spectroscopy. Phys. Rev. Lett. 104, 156401 (2010).

    Google Scholar 

  15. 15.

    Bussolotti, F. et al. Hole-phonon coupling effect on the band dispersion of organic molecular semiconductors. Nat. Commun. 8, 173 (2017).

    CAS  Google Scholar 

  16. 16.

    Ciuchi, S. & Fratini, S. Band dispersion and electronic lifetimes in crystalline organic semiconductors. Phys. Rev. Lett. 106, 166403 (2011).

    CAS  Google Scholar 

  17. 17.

    Ciuchi, S. et al. Molecular fingerprints in the electronic properties of crystalline organic semiconductors: from experiment to theory. Phys. Rev. Lett. 108, 256401 (2012).

    CAS  Google Scholar 

  18. 18.

    Eggeman, A. S., Illig, S., Troisi, A., Sirringhaus, H. & Midgley, P. A. Measurement of molecular motion in organic semiconductors by thermal diffuse electron scattering. Nat. Mater. 12, 1045–1049 (2013).

    CAS  Google Scholar 

  19. 19.

    Illig, S. et al. Reducing dynamic disorder in small-molecule organic semiconductors by suppressing large-Amplitude thermal motions. Nat. Commun. 7, 10736 (2016).

    CAS  Google Scholar 

  20. 20.

    Gershenson, M. E., Podzorov, V. & Morpurgo, A. F. Colloquium: electronic transport in single-crystal organic transistors. Rev. Mod. Phys. 78, 973–989 (2006).

    CAS  Google Scholar 

  21. 21.

    Yada, H. et al. Carrier dynamics of rubrene single-crystals revealed by transient broadband terahertz spectroscopy. Appl. Phys. Lett. 105, 143302 (2014).

    Google Scholar 

  22. 22.

    Li, Z. Q. et al. Light quasiparticles dominate electronic transport in molecular crystal field-effect transistors. Phys. Rev. Lett. 99, 016403 (2007).

    CAS  Google Scholar 

  23. 23.

    Fischer, M., Dressel, M., Gompf, B., Tripathi, A. K. & Pflaum, J. Infrared spectroscopy on the charge accumulation layer in rubrene single crystals. Appl. Phys. Lett. 89, 182103 (2006).

    Google Scholar 

  24. 24.

    Meneau, A. Y. B. et al. Temperature dependence of charge localization in high-mobility, solution-crystallized small molecule semiconductors studied by charge modulation spectroscopy. Adv. Funct. Mater. 26, 2326–2333 (2016).

    CAS  Google Scholar 

  25. 25.

    Sakai, K. et al. The emergence of charge coherence in soft molecular organic semiconductors via the suppression of thermal fluctuations. npg Asia Mater. 8, e252 (2016).

    CAS  Google Scholar 

  26. 26.

    Kubo, T. et al. Suppressing molecular vibrations in organic semiconductors by inducing strain. Nat. Commun. 7, 11156 (2016).

    CAS  Google Scholar 

  27. 27.

    Ren, X. et al. Negative isotope effect on field-effect hole transport in fully substituted 13C-rubrene. Adv. Electron. Mater. 3, 1700018 (2017).

    Google Scholar 

  28. 28.

    Hussey, N. E., Takenaka, K. & Takagi, H. Universality of the Mott-Ioffe-Regel limit in metals. Philos. Mag. 84, 2847–2864 (2004).

    CAS  Google Scholar 

  29. 29.

    Fratini, S., Mayou, D. & Ciuchi, S. The transient localization scenario for charge transport in crystalline organic materials. Adv. Funct. Mater. 26, 2292–2315 (2016).

    CAS  Google Scholar 

  30. 30.

    Fratini, S. & Ciuchi, S. Dynamical localization corrections to band transport. Phys. Rev. Lett. 2, 013001 (2019).

    Google Scholar 

  31. 31.

    Troisi, A. & Orlandi, G. Charge-transport regime of crystalline organic semiconductors: diffusion limited by thermal off-diagonal electronic disorder. Phys. Rev. Lett. 96, 086601 (2006).

    Google Scholar 

  32. 32.

    Ciuchi, S., Fratini, S. & Mayou, D. Transient localization in crystalline organic semiconductors. Phys. Rev. B 83, 081202 (2011).

    Google Scholar 

  33. 33.

    Giannini, S. et al. Quantum localization and delocalization of charge carriers in organic semiconducting crystals. Nat. Commun. 10, 3843 (2019).

    Google Scholar 

  34. 34.

    Ortmann, F., Bechstedt, F. & Hannewald, K. Charge transport in organic crystals: theory and modelling. Phys. status solidi 248, 511–525 (2011).

    CAS  Google Scholar 

  35. 35.

    Wang, L., Prezhdo, O. V. & Beljonne, D. Mixed quantum-classical dynamics for charge transport in organics. Phys. Chem. Chem. Phys. 17, 12395–12406 (2015).

    CAS  Google Scholar 

  36. 36.

    Giannini, S., Carof, A. & Blumberger, J. Crossover from hopping to band-like charge transport in an organic semiconductor model: atomistic nonadiabatic molecular dynamics simulation. J. Phys. Chem. Lett. 9, 3116–3123 (2018).

    CAS  Google Scholar 

  37. 37.

    Wang, L. et al. Computational methods for design of organic materials with high charge mobility. Chem. Soc. Rev. 39, 423–434 (2010).

    CAS  Google Scholar 

  38. 38.

    Fratini, S., Ciuchi, S., Mayou, D., De Laissardière, G. T. & Troisi, A. A map of high-mobility molecular semiconductors. Nat. Mater. 16, 998–1002 (2017).

    CAS  Google Scholar 

  39. 39.

    Schweicher, G. et al. Chasing the “killer” phonon mode for the rational design of low‐disorder, high‐mobility molecular semiconductors. Adv. Mater. 31, 1902407 (2019).

    CAS  Google Scholar 

  40. 40.

    Harrelson, T. F. et al. Direct probe of the nuclear modes limiting charge mobility in molecular semiconductors. Mater. Horizons 6, 182–191 (2019).

    CAS  Google Scholar 

  41. 41.

    Ruggiero, M. T., Ciuchi, S., Fratini, S. & D’Avino, G. Electronic structure, electron-phonon coupling, and charge transport in crystalline rubrene under mechanical strain. J. Phys. Chem. C 123, 15897–15907 (2019).

    CAS  Google Scholar 

  42. 42.

    Ciuchi, S. & Fratini, S. Electronic transport and quantum localization effects in organic semiconductors. Phys. Rev. B 86, 245201 (2012).

    Google Scholar 

  43. 43.

    Fratini, S., Ciuchi, S., Mayou, D., Trambly de Laissardière, G. & Troisi, A. A map of high-mobility molecular semiconductors. Nat. Mater. 16, 998–1002 (2017).

    CAS  Google Scholar 

  44. 44.

    Lee, N. E., Zhou, J. J., Agapito, L. A. & Bernardi, M. Charge transport in organic molecular semiconductors from first principles: the bandlike hole mobility in a naphthalene crystal. Phys. Rev. B 97, 115203 (2018).

    CAS  Google Scholar 

  45. 45.

    Okamoto, T. et al. V-shaped organic semiconductors with solution processability, high mobility, and high thermal durability. Adv. Mater. 25, 6392–6397 (2013).

    CAS  Google Scholar 

  46. 46.

    Minder, N. A., Ono, S., Chen, Z., Facchetti, A. & Morpurgo, A. F. Band-like electron transport in organic transistors and implication of the molecular structure for performance optimization. Adv. Mater. 24, 503–508 (2012).

    CAS  Google Scholar 

  47. 47.

    Vladimirov, I., Kühn, M., Geßner, T., May, F. & Weitz, R. T. Energy barriers at grain boundaries dominate charge carrier transport in an electron-conductive organic semiconductor. Sci. Rep. 8, 14868 (2018).

    CAS  Google Scholar 

  48. 48.

    Nielsen, C. B., Turbiez, M. & McCulloch, I. Recent advances in the development of semiconducting DPP-containing polymers for transistor applications. Adv. Mater. 25, 1859–1880 (2013).

    CAS  Google Scholar 

  49. 49.

    Wang, E., Mammo, W. & Andersson, M. R. 25th anniversary article: isoindigo-based polymers and small molecules for bulk heterojunction solar cells and field effect transistors. Adv. Mater. 1801–1826 (2014).

  50. 50.

    Hoi, B. et al. The influence of morphology on high-performance polymer field-effect transistors. Adv. Mater. 21, 209–212 (2009).

    Google Scholar 

  51. 51.

    Kastler, M. et al. A high-mobility electron-transporting polymer for printed transistors. Nature 457, 679–686 (2009).

    Google Scholar 

  52. 52.

    Yamashita, Y. et al. Mobility exceeding 10 cm2/(V · s) in donor − acceptor polymer transistors with band-like charge transport. Chem. Mater. 28, 420–424 (2016).

    CAS  Google Scholar 

  53. 53.

    Schott, S. et al. Charge-transport anisotropy in a uniaxially aligned diketopyrrolopyrrole-based copolymer. Adv. Mater. 27, 7356–7364 (2015).

    CAS  Google Scholar 

  54. 54.

    Bucella, S. G. et al. Macroscopic and high-throughput printing of aligned nanostructured polymer semiconductors for MHz large-area electronics. Nat. Commun. 6, 8394 (2015).

    CAS  Google Scholar 

  55. 55.

    Venkateshvaran, D. et al. Approaching disorder-free transport in high-mobility conjugated polymers. Nature 515, 384–388 (2014).

    CAS  Google Scholar 

  56. 56.

    Xu, Y. et al. Exploring the charge transport in conjugated polymers. Adv. Mater. 29, 1702729 (2017).

    Google Scholar 

  57. 57.

    Kronemeijer, A. J. et al. Two-dimensional carrier distribution in top-gate polymer field-effect transistors: correlation between width of density of localized states and urbach energy. Adv. Mater. 26, 728–733 (2014).

    CAS  Google Scholar 

  58. 58.

    Senanayak, S. P., Ashar, A. Z., Kanimozhi, C., Patil, S. & Narayan, K. S. Room-temperature bandlike transport and Hall effect in a high-mobility ambipolar polymer. Phys. Rev. B 91, 115302 (2015).

    Google Scholar 

  59. 59.

    Yamashita, Y. et al. Transition between band and hopping transport in polymer field-effect transistors. Adv. Mater. 26, 8169–8173 (2014).

    CAS  Google Scholar 

  60. 60.

    Steyrleuthner, B. R. et al. Bulk electron transport and charge injection in a high mobility n-type semiconducting polymer. Adv. Mater. 22, 2799–2803 (2010).

    CAS  Google Scholar 

  61. 61.

    Nikolka, M. et al. High-mobility, trap-free charge transport in conjugated polymer diodes. Nat. Commun. 10, 2122 (2019).

    Google Scholar 

  62. 62.

    Abramavicius, V., Pranculis, V., Melianas, A., Inganäs, O. & Gulbinas, V. Role of coherence and delocalization in photo-induced electron transfer at organic interfaces. Sci. Rep. 6, 32914 (2016).

    CAS  Google Scholar 

  63. 63.

    Devižis, A., Meerholz, K., Hertel, D. & Gulbinas, V. Hierarchical charge carrier motion in conjugated polymers. Chem. Phys. Lett. 498, 302–306 (2010).

    Google Scholar 

  64. 64.

    Noriega, R., Salleo, A. & Spakowitz, A. J. Chain conformations dictate multiscale charge transport phenomena in disordered semiconducting polymers. 8, 16315–16320 (2013).

  65. 65.

    Hendry, E. et al. Interchain effects in the ultrafast photophysics of a semiconducting polymer: THz time-domain spectroscopy of thin films and isolated chains in solution. Phys. Rev. B 71, 125201 (2005).

    Google Scholar 

  66. 66.

    Prins, P. et al. High intrachain hole mobility on molecular wires of ladder-type poly(p-phenylenes). Phys. Rev. Lett. 96, 146601 (2006).

    CAS  Google Scholar 

  67. 67.

    Noriega, R. et al. A general relationship between disorder, aggregation and charge transport in conjugated polymers. Nat. Mater. 12, 1038–44 (2013).

    CAS  Google Scholar 

  68. 68.

    Statz, M. et al. On the manifestation of electron-electron interactions in the thermoelectric response of semicrystalline conjugated polymers with low energetic disorder. Commun. Phys. 1, 16 (2018).

    Google Scholar 

  69. 69.

    Mollinger, S. A., Krajina, B. A., Noriega, R., Salleo, A. & Spakowitz, A. J. Percolation, tie-molecules, and the microstructural determinants of charge transport in semicrystalline conjugated polymers. ACS Macro Lett. 4, 708–712 (2015).

    CAS  Google Scholar 

  70. 70.

    Gu, K. et al. Assessing the huang-brown description of tie chains for charge transport in conjugated polymers. ACS Macro Lett. 7, 1333–1338 (2018).

    CAS  Google Scholar 

  71. 71.

    Watts, B., Schuettfort, T. & McNeill, C. R. Mapping of domain orientation and molecular order in polycrystalline semiconducting polymer films with soft X-ray microscopy. Adv. Funct. Mater. 21, 1122–1131 (2011).

    CAS  Google Scholar 

  72. 72.

    Jimison, L. H., Toney, M. F., McCulloch, I., Heeney, M. & Salleo, A. Charge-transport anisotropy due to grain boundaries in directionally crystallized thin films of regioregular poly(3-hexylthiophene). Adv. Mater. 21, 1568–1572 (2009).

    CAS  Google Scholar 

  73. 73.

    Martin, D. C., Martin, D. C. & Thomas, E. L. Grain boundaries in extended-chain polymers: theory and experiment. Philos. Mag. A 64, 903–922 (1991).

    CAS  Google Scholar 

  74. 74.

    Takacs, C. J., Brady, M. A., Treat, N. D., Kramer, E. J. & Chabinyc, M. L. Quadrites and crossed-chain crystal structures in polymer semiconductors. Nano Lett. 14, 3101 (2014).

    Google Scholar 

  75. 75.

    Rühle, V. et al. Microscopic simulations of charge transport in disordered organic semiconductors. Journal of Chemical Theory and Computation 7, 3335–3345 (2011).

    Google Scholar 

  76. 76.

    Martinelli, N. et al. in Functional Supramolecular Architectures: For Organic Electronics and Nanotechnology Vol. 1 (eds Samorì, P. & Cacialli, F.) 1–38 (Wiley, 2010).

  77. 77.

    Kirkpatrick, J., Marcon, V., Nelson, J., Kremer, K. & Andrienko, D. Charge mobility of discotic mesophases: a multiscale quantum and classical study. Phys. Rev. Lett. 98, 227402 (2007).

    Google Scholar 

  78. 78.

    McMahon, D. P. et al. Relation between microstructure and charge transport in polymers of different regioregularity. J. Phys. Chem. C 115, 19386–19393 (2011).

    CAS  Google Scholar 

  79. 79.

    Poelking, C. et al. Characterization of charge-carrier transport in semicrystalline polymers: electronic couplings, site energies, and charge-carrier dynamics in poly(bithiophene-alt-thienothiophene) [PBTTT]. J. Phys. Chem. C 117, 1633–1640 (2013).

    CAS  Google Scholar 

  80. 80.

    Liu, T. & Troisi, A. Understanding the microscopic origin of the very high charge mobility in PBTTT: tolerance of thermal disorder. Adv. Funct. Mater. 24, 925–933 (2014).

    CAS  Google Scholar 

  81. 81.

    Schulz, G. L. et al. The PCPDTBT family: correlations between chemical structure, polymorphism, and device performance. Macromolecules 50, 1402–1414 (2017).

    CAS  Google Scholar 

  82. 82.

    Fornari, R. P. & Troisi, A. Theory of charge hopping along a disordered polymer chain. Phys. Chem. Chem. Phys. 16, 9997–10007 (2014).

    CAS  Google Scholar 

  83. 83.

    Fornari, R. P. & Troisi, A. Narrower bands with better charge transport: the counterintuitive behavior of semiconducting copolymers. Adv. Mater. 26, 7627–7631 (2014).

    CAS  Google Scholar 

  84. 84.

    Fornari, R. P., Blom, P. W. M. & Troisi, A. How many parameters actually affect the mobility of conjugated polymers? Phys. Rev. Lett. 118, 086601 (2017).

    Google Scholar 

  85. 85.

    Warr, D. A. et al. Sequencing conjugated polymers by eye. Sci. Adv. 4, eaas9543 (2018).

    Google Scholar 

  86. 86.

    Thomas, T. H. et al. Short contacts between chains enhancing luminescence quantum yields and carrier mobilities in conjugated copolymers. Nat. Commun. 10, 2614 (2019).

    Google Scholar 

  87. 87.

    Anderson, M. et al. Displacement of polarons by vibrational modes in doped conjugated polymers. Phys. Rev. Mater. 1, 055604 (2017).

    Google Scholar 

  88. 88.

    Schott, S. et al. Polaron spin dynamics in high-mobility polymeric semiconductors. Nat. Phys. 15, 814–822 (2019).

    CAS  Google Scholar 

  89. 89.

    Tsurumi, J. et al. Coexistence of ultra-long spin relaxation time and coherent charge transport in organic single-crystal semiconductors. Nat. Phys. 13, 994–998 (2017).

    CAS  Google Scholar 

  90. 90.

    Kambe, T. et al. π-Conjugated nickel bis(dithiolene) complex nanosheet. J. Am. Chem. Soc. 135, 2462–2465 (2013).

    CAS  Google Scholar 

  91. 91.

    Paulsen, B. D., Tybrandt, K., Stavrinidou, E. & Rivnay, J. Organic mixed ionic–electronic conductors. Nat. Mater. 19, 13–26 (2020).

    CAS  Google Scholar 

  92. 92.

    Hoshino, A., Takenaka, Y. & Miyaji, H. Redetermination of the crystal structure of α-copper phthalocyanine grown on KCl. Acta Crystallogr. Sect. B Struct. Sci. 59, 393–403 (2003).

    Google Scholar 

  93. 93.

    Jurchescu, O. D., Meetsma, A. & Palstra, T. T. M. Low-temperature structure of rubrene single crystals grown by vapor transport. Electrochem. Solid State Lett. 9, 330–334 (2006).

    Google Scholar 

  94. 94.

    Anthony, J. E., Brooks, J. S., Eaton, D. L. & Parkin, S. R. Functionalized pentacene: improved electronic properties from control of solid-state order. J. Am. Chem. Soc. 123, 9482–9483 (2001).

    CAS  Google Scholar 

  95. 95.

    Podzorov, V., Menard, E., Rogers, J. A. & Gershenson, M. E. Hall effect in the accumulation layers on the surface of organic semiconductors. Phys. Rev. Lett. 95, 226601 (2005).

    CAS  Google Scholar 

  96. 96.

    Jurchescu, O. D. et al. Organic single-crystal field-effect transistors of a soluble anthradithiophene. Chem. Mater. 20, 6733–6737 (2008).

    CAS  Google Scholar 

  97. 97.

    Ebata, H. et al. Highly soluble [1]benzothieno[3,2-b]benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. J. Am. Chem. Soc. 129, 15732–15733 (2007).

    CAS  Google Scholar 

  98. 98.

    Kang, M. J. et al. Alkylated dinaphtho[2,3-b:2′, 3′-f]thieno[3,2-b]thiophenes (Cn-DNTTs): organic semiconductors for high-performance thin-film transistors. Adv. Mater. 23, 1222–1225 (2011).

    CAS  Google Scholar 

  99. 99.

    Park, J.-I. et al. Dibenzothiopheno[6,5-b:6’, 5’-f]thieno[3,2-b]thiophene (DBTTT): high-performance small-molecule organic semiconductor for field-effect transistors. J. Am. Chem. Soc. 137, 12175–12178 (2015).

    CAS  Google Scholar 

  100. 100.

    Iino, H., Usui, T. & Hanna, J. I. Liquid crystals for organic thin-film transistors. Nat. Commun. 6, 6828 (2015).

    CAS  Google Scholar 

  101. 101.

    Okamoto, T. Next-generation organic semiconductors driven by bent-shaped π-electron cores. Polym. J. 51, 825–833 (2019).

    CAS  Google Scholar 

  102. 102.

    Watanabe, S. et al. Remarkably low flicker noise in solution-processed organic single crystal transistors. Commun. Phys. 1, 37 (2018).

    Google Scholar 

  103. 103.

    Jones, B. A. et al. High-mobility air-stable n-type semiconductors with processing versatility: dicyanoperylene-3,4:9,10-bis(dicarboximides). Angew. Chem. Int. Ed. 43, 6363–6366 (2004).

    CAS  Google Scholar 

  104. 104.

    He, T. et al. Single-crystal field-effect transistors of new Cl2-NDI polymorph processed by sublimation in air. Nat. Commun. 6, 5954 (2015).

    CAS  Google Scholar 

  105. 105.

    Li, H. et al. High-mobility field-effect transistors from large-area solution-grown aligned C60 single crystals. J. Am. Chem. Soc. 134, 2760–2765 (2012).

    CAS  Google Scholar 

  106. 106.

    Sirringhaus, H. et al. Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401, 685–688 (1999).

    CAS  Google Scholar 

  107. 107.

    Bao, Z., Dodabalapur, A. & Lovinger, A. J. Soluble and processable regioregular poly(3-hexylthiophene) for thin film field-effect transistor applications with high mobility. Appl. Phys. Lett. 69, 4108–4110 (1996).

    CAS  Google Scholar 

  108. 108.

    McCulloch, I. et al. Liquid-crystalline semiconducting polymers with high charge-carrier mobility. Nat. Mater. 5, 328–333 (2006).

    CAS  Google Scholar 

  109. 109.

    Rivnay, J. et al. Structural origin of gap states in semicrystalline polymers and the implications for charge transport. Phys. Rev. B 83, 121306 (2011).

    Google Scholar 

  110. 110.

    Mei, J., Kim, D. H., Ayzner, A. L., Toney, M. F. & Bao, Z. Siloxane-terminated solubilizing side chains: bringing conjugated polymer backbones closer and boosting hole mobilities in thin-film transistors. J. Am. Chem. Soc. 133, 20130–20133 (2011).

    CAS  Google Scholar 

  111. 111.

    Chen, H. et al. Dithiopheneindenofluorene (TIF) semiconducting polymers with very high mobility in field-effect transistors. Adv. Mater. 29, 1702523 (2017).

    Google Scholar 

  112. 112.

    Zhang, X. et al. Molecular origin of high field-effect mobility in an indacenodithiophene-benzothiadiazole copolymer. Nat. Commun. 4, 2238 (2013).

    Google Scholar 

  113. 113.

    Jacobs, I. E. & Moulé, A. J. Controlling molecular doping in organic semiconductors. Adv. Mater. 29, 1703063 (2017).

    Google Scholar 

  114. 114.

    Li, J. et al. Correlated electron-hole mechanism for molecular doping in organic semiconductors. Phys. Rev. Mater. 1, 025602 (2017).

    Google Scholar 

  115. 115.

    Cendra, C. et al. Role of the anion on the transport and structure of organic mixed conductors. Adv. Funct. Mater. 29, 1807034 (2019).

    Google Scholar 

  116. 116.

    Hulea, I. N. et al. Wide energy-window view on the density of states and hole mobility in poly(p-phenylene vinylene). Phys. Rev. Lett. 93, 166601 (2004).

    CAS  Google Scholar 

  117. 117.

    Kang, K. et al. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. Nat. Mater. 15, 896–902 (2016).

    CAS  Google Scholar 

  118. 118.

    Mityashin, A. et al. Unraveling the mechanism of molecular doping in organic semiconductors. Adv. Mater. 24, 1535–1539 (2012).

    CAS  Google Scholar 

  119. 119.

    Png, R.-Q. et al. Madelung and Hubbard interactions in polaron band model of doped organic semiconductors. Nat. Commun. 7, 11948 (2016).

    CAS  Google Scholar 

Download references


S.F. acknowledges support by the German Research Foundation DFG (grant DR228/48-1). M.N. thanks the European Commission for a Marie Skłodowska-Curie Fellowship. A.S. acknowledges financial support from the National Science Foundation, Division of Materials Research, award 1808401. G.S. acknowledges postdoctoral fellowship support from the Leverhulme Trust (Early Career Fellowship supported by the Isaac Newton Trust). H.S. thanks the Engineering and Physical Sciences Research Council (EPSRC programme grant EP/M005143/1) and the European Research Council (ERC) (Synergy grant SC2 610115) for funding.

Author information



Corresponding author

Correspondence to Henning Sirringhaus.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fratini, S., Nikolka, M., Salleo, A. et al. Charge transport in high-mobility conjugated polymers and molecular semiconductors. Nat. Mater. 19, 491–502 (2020).

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing