Single-crystal Winterbottom constructions of nanoparticle superlattices

Abstract

Colloidal nanoparticle assembly methods can serve as ideal models to explore the fundamentals of homogeneous crystallization phenomena, as interparticle interactions can be readily tuned to modify crystal nucleation and growth. However, heterogeneous crystallization at interfaces is often more challenging to control, as it requires that both interparticle and particle–surface interactions be manipulated simultaneously. Here, we demonstrate how programmable DNA hybridization enables the formation of single-crystal Winterbottom constructions of substrate-bound nanoparticle superlattices with defined sizes, shapes, orientations and degrees of anisotropy. Additionally, we show that some crystals exhibit deviations from their predicted Winterbottom structures due to an additional growth pathway that is not typically observed in atomic crystals, providing insight into the differences between this model system and other atomic or molecular crystals. By precisely tailoring both interparticle and particle–surface potentials, we therefore can use this model to both understand and rationally control the complex process of interfacial crystallization.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Substrate growth of crystals into Winterbottom shapes.
Fig. 2: Salt concentration effects on crystal growth.
Fig. 3: DNA loading effects on Winterbottom shape.
Fig. 4: Deviations from Winterbottom construction.
Fig. 5: Fcc and AlB2 crystal growth on substrates.

Data availability

The data supporting the findings of this study are available within this article and its Supplementary Information. SEM images used to create datasets are available at https://doi.org/10.7910/DVN/UCLKQC.

References

  1. 1.

    Anderson, V. J. & Lekkerkerker, H. N. W. Insights into phase transition kinetics from colloid science. Nature 416, 811–815 (2002).

    CAS  Article  Google Scholar 

  2. 2.

    Li, F., Josephson, D. P. & Stein, A. Colloidal assembly: the road from particles to colloidal molecules and crystals. Angew. Chem. Int. Ed. 50, 360–388 (2011).

    CAS  Article  Google Scholar 

  3. 3.

    Hwang, H., Weitz, D. A. & Spaepen, F. Direct observation of crystallization and melting with colloids. Proc. Natl Acad. Sci. USA 116, 1180–1184 (2019).

    CAS  Article  Google Scholar 

  4. 4.

    Ohring, M. Materials Science of Thin Films 2nd edn (Elsevier, 2002) .

  5. 5.

    Park, D. J. et al. Plasmonic photonic crystals realized through DNA-programmable assembly. Proc. Natl Acad. Sci. USA 112, 977–981 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Maier, S. A. et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat. Mater. 2, 229–232 (2003).

    CAS  Article  Google Scholar 

  7. 7.

    Blaaderen, A., Ruel, R. & Wiltzius, P. Template-directed colloidal crystallization. Nature 385, 321 (1997).

    Article  Google Scholar 

  8. 8.

    Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S. & Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 439, 55 (2006).

    CAS  Article  Google Scholar 

  9. 9.

    Ganapathy, R., Buckley, M. R., Gerbode, S. J. & Cohen, I. Direct measurements of island growth and step-edge barriers in colloidal epitaxy. Science 327, 445–448 (2010).

    CAS  Article  Google Scholar 

  10. 10.

    Rupich, S. M., Castro, F. C., Irvine, W. T. M. & Talapin, D. V. Soft epitaxy of nanocrystal superlattices. Nat. Commun. 5, 5045 (2014).

    CAS  Article  Google Scholar 

  11. 11.

    Macfarlane, R. J., O’Brien, M. N., Petrosko, S. H. & Mirkin, C. A. Nucleic acid-modified nanostructures as programmable atom equivalents: forging a new ‘table of elements’. Angew. Chem. Int. Ed. 52, 5688–5698 (2013).

    CAS  Article  Google Scholar 

  12. 12.

    Laramy, C. R., O’Brien, M. N. & Mirkin, C. A. Crystal engineering with DNA. Nat. Rev. Mater. 4, 201–224 (2019).

    CAS  Article  Google Scholar 

  13. 13.

    Wang, Y. et al. Synthetic strategies toward DNA-coated colloids that crystallize. J. Am. Chem. Soc. 137, 10760–10766 (2015).

    CAS  Article  Google Scholar 

  14. 14.

    Macfarlane, R. J. et al. Nanoparticle superlattice engineering with DNA. Science 334, 204–208 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    Senesi, A. J. et al. Stepwise evolution of DNA-programmable nanoparticle superlattices. Angew. Chem. Int. Ed. 52, 6624–6628 (2013).

    CAS  Article  Google Scholar 

  16. 16.

    Auyeung, E. et al. DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature 505, 73–77 (2014).

    Article  Google Scholar 

  17. 17.

    Winterbottom, W. L. Equilibrium shape of a small particle in contact with a foreign substrate. Acta Metall. 15, 303–310 (1967).

    CAS  Article  Google Scholar 

  18. 18.

    Marks, L. D. & Peng, L. Nanoparticle shape, thermodynamics and kinetics. J. Phys. Condens. Matter 28, 053001 (2016).

    CAS  Article  Google Scholar 

  19. 19.

    Seo, S. E., Girard, M., de la Cruz, M. O. & Mirkin, C. A. The importance of salt-enhanced electrostatic repulsion in colloidal crystal engineering with DNA. ACS Cent. Sci. 5, 186–191 (2019).

    CAS  Article  Google Scholar 

  20. 20.

    Lewis, D. J., Gabrys, P. A. & Macfarlane, R. J. DNA-directed non-Langmuir deposition of programmable atom equivalents. Langmuir 34, 14842–14850 (2018).

    CAS  Article  Google Scholar 

  21. 21.

    O’Brien, M. N., Radha, B., Brown, K. A., Jones, M. R. & Mirkin, C. A. Langmuir analysis of nanoparticle polyvalency in DNA-mediated adsorption. Angew. Chem. Int. Ed. 53, 9532–9538 (2014).

    Article  Google Scholar 

  22. 22.

    Lee, A. A., Perez-Martinez, C. S., Smith, A. M. & Perkin, S. Scaling analysis of the screening length in concentrated electrolytes. Phys. Rev. Lett. 119, 026002 (2017).

    Article  Google Scholar 

  23. 23.

    Li, Y., Girard, M., Shen, M., Millan, J. A. & Cruz, M. O. de la Strong attractions and repulsions mediated by monovalent salts. Proc. Natl Acad. Sci. USA 114, 11838–11843 (2017).

    CAS  Article  Google Scholar 

  24. 24.

    Zwanikken, J. W. & de la CruzM. O. Tunable soft structure in charged fluids confined by dielectric interfaces. Proc. Natl Acad. Sci. USA 110, 5301–5308 (2013).

    CAS  Article  Google Scholar 

  25. 25.

    Zucker, R. V., Chatain, D., Dahmen, U., Hagège, S. & Carter, W. C. New software tools for the calculation and display of isolated and attached interfacial-energy minimizing particle shapes. J. Mater. Sci. 47, 8290–8302 (2012).

    CAS  Article  Google Scholar 

  26. 26.

    Seo, S. E., Girard, M., de la Cruz, M. O. & Mirkin, C. A. Non-equilibrium anisotropic colloidal single crystal growth with DNA. Nat. Commun. 9, e4558 (2018).

  27. 27.

    Gabrys, P. A. & Macfarlane, R. J. Controlling crystal texture in programmable atom equivalent thin films. ACS Nano 13, 8452–8460 (2019).

    CAS  Article  Google Scholar 

  28. 28.

    Thompson, C. V. Solid-state dewetting of thin films. Annu. Rev. Mater. Res. 42, 399–434 (2012).

    CAS  Article  Google Scholar 

  29. 29.

    Holzinger, M., Le Goff, A. & Cosnier, S. Nanomaterials for biosensing applications: a review. Front. Chem. 2, 63 (2014).

    Article  Google Scholar 

  30. 30.

    Ito, T., Katsura, C., Sugimoto, H., Nakanishi, E. & Inomata, K. Strain-responsive structural colored elastomers by fixing colloidal crystal assembly. Langmuir 29, 13951–13957 (2013).

    CAS  Article  Google Scholar 

  31. 31.

    Hill, H. D. & Mirkin, C. A. The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange. Nat. Protoc. 1, 324–336 (2006).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Fabrication of substrates was performed at the Materials Technology Laboratory at MIT. AFM and SEM characterization were performed at Draper. D.J.L. was supported by a Draper Fellowship. L.Z.Z. acknowledges support from the National Science Foundation Graduate Research Fellowship Program under grant no. NSF 1122374. We thank P.J. Santos for production of the gold nanoparticles used in this work. This work was supported by the following awards: the Air Force Office of Scientific Research’s Young Investigator Research Program (grant no. FA9550–17–1–0288); the Defense Advanced Research Projects Agency and the Office of Naval Research (contract no. FA8650-15-C-7543); the US Army Research Office under cooperative agreement no. W911NF-19-2-0026 for the Institute for Collaborative Biotechnologies.

Author information

Affiliations

Authors

Contributions

Experiments were designed by D.J.L., D.J.D.C. and R.J.M. D.J.L. conducted experiments. D.J.L. and L.Z.Z. performed data analysis. D.J.L., L.Z.Z., D.J.D.C. and R.J.M. wrote the manuscript.

Corresponding author

Correspondence to Robert J. Macfarlane.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary methods, Notes 1 and 2, Figs. 1–20, Table 1 and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lewis, D.J., Zornberg, L.Z., Carter, D.J.D. et al. Single-crystal Winterbottom constructions of nanoparticle superlattices. Nat. Mater. (2020). https://doi.org/10.1038/s41563-020-0643-6

Download citation