Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Stresses in thin sheets at fluid interfaces

A Publisher Correction to this article was published on 23 April 2020

This article has been updated

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Measuring the stress in a thin film at a fluid interface.
Fig. 2: Measured meniscus profiles.
Fig. 3: Gedankenexperiment.

Data availability

Source data for Fig. 2 are provided with the paper. All remaining data are available from the authors upon request.

Change history

References

  1. Gurney, C. Surface tension in liquids. Nature 160, 166–167 (1947).

    CAS  Article  Google Scholar 

  2. Shuttleworth, R. The surface tension of solids. Proc. Phys. Soc. A 63, 444–457 (1950).

    Article  Google Scholar 

  3. Gurtin, M. E. & Murdoch, A. I. A continuum theory of elastic material surfaces. Arch. Ration. Mech. Anal. 57, 291–323 (1975).

    Article  Google Scholar 

  4. Makkonen, L. Misconceptions of the relation between surface energy and surface tension on a solid. Langmuir 30, 2580–2581 (2014).

    CAS  Article  Google Scholar 

  5. Müller, P., Saùl, A. & Leroy, F. Simple views on surface stress and surface energy concepts. Adv. Nat. Sci. Nanosci. Nanotechnol. 5, 013002 (2013).

    Article  Google Scholar 

  6. Schulman, R. D., Trejo, M., Salez, T., Raphaël, E. & Dalnoki-Veress, K. Surface energy of strained amorphous solids. Nat. Commun. 9, 982 (2018).

    Article  Google Scholar 

  7. Style, R. et al. Universal deformation of soft substrates near a contact line and the direct measurement of solid surface stresses. Phys. Rev. Lett. 110, 066103 (2013).

    Article  Google Scholar 

  8. Style, R. W., Hyland, C., Boltyanskiy, R., Wettlaufer, J. S. & Dufresne, E. R. Surface tension and contact with soft elastic solids. Nat. Commun. 4, 2728 (2013).

    Article  Google Scholar 

  9. Xu, Q. et al. Direct measurement of strain-dependent solid surface stress. Nat. Commun. 8, 555 (2017).

    Article  Google Scholar 

  10. Style, R. W., Jagota, A., Hui, C.-Y. & Dufresne, E. R. Elastocapillarity: surface tension and the mechanics of soft solids. Annu. Rev. Condens. Matter Phys. 8, 99–118 (2017).

    CAS  Article  Google Scholar 

  11. Schroll, R. D. et al. Capillary deformations of bendable films. Phys. Rev. Lett. 111, 014301 (2013).

    CAS  Article  Google Scholar 

  12. Schulman, R. D. & Dalnoki-Veress, K. Liquid droplets on a highly deformable membrane. Phys. Rev. Lett. 115, 206101 (2015).

    Article  Google Scholar 

  13. Schulman, R. D., Ledesma-Alonso, R., Salez, T., Raphaël, E. & Dalnoki-Veress, K. Liquid droplets act as “compass needles” for the stresses in a deformable membrane. Phys. Rev. Lett. 118, 198002 (2017).

    Article  Google Scholar 

  14. Nadermann, N., Hui, C.-H. & Jagota, A. Solid surface tension measured by a liquid drop under a solid film. Proc. Natl Acad. Sci. USA 110, 10541–10545 (2013).

    CAS  Article  Google Scholar 

  15. Fortais, A., Schulman, R. D. & Dalnoki-Veress, K. Liquid droplets on a free-standing glassy membrane: deformation through the glass transition. Eur. Phys. J. E 40, 69 (2017).

    Article  Google Scholar 

  16. Davidovitch, B. & Vella, D. Partial wetting of thin solid sheets under tension. Soft Matter 14, 4913–4934 (2018).

    CAS  Article  Google Scholar 

  17. Makkonen, L. Young’s equation revisited. J. Phys. Condens. Matter 28, 135001 (2016).

    Article  Google Scholar 

  18. Gao, L. & McCarthy, T. How Wenzel and Cassie were wrong. Langmuir 23, 3762–3765 (2007).

    CAS  Article  Google Scholar 

  19. Bico, J., Reyssat, E. & Roman, B. Elastocapillarity: when surface tension deforms elastic solids. Annu. Rev. Fluid Mech. 50, 629–659 (2018).

    Article  Google Scholar 

  20. Twohig, T., May, S. & Croll, A. B. Microscopic details of a fluid/thin film triple line. Soft Matter 14, 7492–7499 (2018).

    CAS  Article  Google Scholar 

  21. de Gennes, P.-G., Brochard-Wyart, F. & Quéré, D. Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves (Springer, 2013).

  22. Efrati, E., Sharon, E. & Kupferman, R. Elastic theory of unconstrained non-euclidean plates. J. Mech. Phys. Solids 57, 762–775 (2009).

    Article  Google Scholar 

  23. Deng, S. & Berry, V. Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater. Today 19, 197–212 (2016).

    CAS  Article  Google Scholar 

  24. Chopin, J., Vella, D. & Boudaoud, A. The liquid blister test. Proc. R. Soc. Lond. A 464, 2887–2906 (2008).

    Google Scholar 

  25. Pham, J. T. et al. Highly stretchable nanoparticle helices through geometric asymmetry and surface forces. Adv. Mater. 25, 6703–6708 (2013).

    CAS  Article  Google Scholar 

  26. Mora, S. et al. Solid drops: large capillary deformations of immersed elastic rods. Phys. Rev. Lett. 111, 114301 (2013).

    Article  Google Scholar 

  27. Liu, T. et al. Interaction of droplets separated by an elastic film. Langmuir 33, 75–81 (2017).

    CAS  Article  Google Scholar 

  28. Cote, L. J. et al. Graphene oxide as surfactant sheets. Pure Appl. Chem. 83, 95–110 (2010).

    Article  Google Scholar 

  29. Witten, T. A., Wang, J., Pocivavsek, L. & Lee, K. Y. C. Wilhelmy plate artifacts in elastic monolayers. J. Chem. Phys. 132, 046102 (2010).

    CAS  Article  Google Scholar 

  30. Shanahan, M. E. R. & de Gennes, P.-G. Equilibrium of the triple line solid/liquid/fluid of a sessile drop. In Adhesion 11 (ed. Allen, K. W.) 71–81 (Springer, 1987).

  31. Cai, S., Chen, D., Suo, Z. & Hayward, R. C. Creasing instability of elastomer films. Soft Matter 8, 1301–1304 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge financial support through the Keck Foundation, NSF-DMR 1507650, 1905698 (NM), NSF-CAREER DMR 1151780 (D.K., B.D.), NSF-DMR 1822439 (B.D.), and the Army Research Office under W911NF-17-1-0003 (T.P.R.). We thank J. D. Paulsen for useful discussions.

Author information

Authors and Affiliations

Authors

Contributions

D.K., T.P.R., B.D. and N.M. contributed to the overall concept of the study. D.K. and N.M. contributed to experimental design. D.K. took the data. D.K., B.D. and N.M. contributed to data analysis. B.D. conceived the gedankenexperiment in Fig. 3. All authors contributed to writing and editing the manuscript.

Corresponding author

Correspondence to Narayanan Menon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Source data

Source Data Fig. 2.

Measured menisci profiles for film-covered and bare water surfaces.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, D., Russell, T.P., Davidovitch, B. et al. Stresses in thin sheets at fluid interfaces. Nat. Mater. 19, 690–693 (2020). https://doi.org/10.1038/s41563-020-0640-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-0640-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing