Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Realizing spin Hamiltonians in nanoscale active photonic lattices

Abstract

Spin models arise in the microscopic description of magnetic materials and have been recently used to map certain classes of optimization problems involving large degrees of freedom. In this regard, various optical implementations of such Hamiltonians have been demonstrated to quickly converge to the global minimum in the energy landscape. Yet, so far, an integrated nanophotonic platform capable of emulating complex magnetic materials is still missing. Here, we show that the cooperative interplay among vectorial electromagnetic modes in coupled metallic nanolasers can be utilized to implement certain types of spin Hamiltonians. Depending on the topology/geometry of the arrays, these structures can be governed by a classical XY Hamiltonian that exhibits ferromagnetic and antiferromagnetic couplings, as well as geometrical frustration. Our results pave the way towards a scalable nanophotonic platform to study spin exchange interactions and could address a variety of optimization problems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spin-like behaviour in coupled metallic nanolaser arrays.
Fig. 2: Lasing supermodes in coupled nanolasers and their corresponding pseudospins when arranged in simple geometric configurations.
Fig. 3: FM and AF interactions in four-element coupled nanodisc lasers.
Fig. 4: Frustrated states in spin-like lasing fields emerging from nanolaser arrays.
Fig. 5: Square lattice of 20 × 20 nanolasers exhibiting FM spin-like behaviour.
Fig. 6: Experimental observation of disorder effects in a kagome AF lattice of nanolasers.

Similar content being viewed by others

Data availability

The datasets used to generate Fig. 1 and Supplementary Figs. 56 and 10 have been uploaded to FigShare39,40. The other datasets generated and/or analysed during the current study are available from the corresponding author on reasonable request.

Code availability

The codes associated with this manuscript are available from the corresponding author on reasonable request.

References

  1. Van Vleck, J. H. The Theory of Electric and Magnetic Susceptibilities (Clarendon, 1932).

  2. Wolf, S. A. et al. Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001).

    Article  CAS  Google Scholar 

  3. Johnson, M. W. et al. Quantum annealing with manufactured spins. Nature 473, 194–198 (2011).

    Article  CAS  Google Scholar 

  4. Sadoc, J.-F. & Mosseri, R. Geometrical Frustration (Cambridge Univ. Press, 1999).

  5. Pauling, L. The structure and entropy of ice and of other crystals with some randomness of atomic arrangement. J. Am. Chem. Soc. 57, 2680–2684 (1935).

    Article  CAS  Google Scholar 

  6. Ramirez, A. P., Hayashi, A., Cava, R. J., Siddharthan, R. & Shastry, B. S. Zero-point entropy in ‘spin ice’. Nature 399, 333–335 (1999).

    Article  CAS  Google Scholar 

  7. Harris, M. J., Bramwell, S. T., McMorrow, D. F., Zeiske, T. & Godfrey, K. W. Geometrical frustration in the ferromagnetic pyrochlore Ho2Ti2O7. Phys. Rev. Lett. 79, 2554–2557 (1997).

    Article  CAS  Google Scholar 

  8. Wu, C. Orbital ordering and frustration of p-band mott insulators. Phys. Rev. Lett. 100, 200406 (2008).

    Article  Google Scholar 

  9. Wright, D. C. & Mermin, N. D. Crystalline liquids: the blue phases. Rev. Mod. Phys. 61, 385–432 (1989).

    Article  CAS  Google Scholar 

  10. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199–208 (2010).

    Article  CAS  Google Scholar 

  11. De las Cuevas, G. & Cubitt, T. S. Simple universal models capture all classical spin physics. Science 351, 1180–1183 (2016).

    Article  CAS  Google Scholar 

  12. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by simulated annealing. Science 220, 671–680 (1983).

    Article  CAS  Google Scholar 

  13. Bloch, I., Dalibard, J. & Nascimbène, S. Quantum simulations with ultracold quantum gases. Nat. Phys. 8, 267–276 (2012).

    Article  CAS  Google Scholar 

  14. Struck, J. et al. Quantum simulation of frustrated classical magnetism in triangular optical lattices. Science 333, 996–999 (2011).

    Article  CAS  Google Scholar 

  15. Trotzky, S. et al. Time-resolved observation and control of superexchange interactions with ultracold atoms in optical lattices. Science 319, 295–299 (2008).

    Article  CAS  Google Scholar 

  16. Struck, J. et al. Engineering Ising–XY spin models in a triangular lattice using tunable artificial gauge fields. Nat. Phys. 9, 738–743 (2013).

    Article  CAS  Google Scholar 

  17. Marandi, A., Wang, Z., Takata, K., Byer, R. L. & Yamamoto, Y. Network of time-multiplexed optical parametric oscillators as a coherent Ising machine. Nat. Photon. 8, 937–942 (2014).

    Article  CAS  Google Scholar 

  18. McMahon, P. L. et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science 354, 614–617 (2016).

    Article  CAS  Google Scholar 

  19. Takeda, Y. et al. Boltzmann sampling for an XY model using a non-degenerate optical parametric oscillator network. Quantum Sci. Technol. 3, 014004 (2018).

    Article  Google Scholar 

  20. Berloff, N. G. et al. Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mater. 16, 1120–1126 (2017).

    Article  CAS  Google Scholar 

  21. Lagoudakis, P. G. & Berloff, N. G. A polariton graph simulator. New J. Phys. 19, 125008 (2017).

    Article  Google Scholar 

  22. Nixon, M., Ronen, E., Friesem, A. A. & Davidson, N. Observing geometric frustration with thousands of coupled lasers. Phys. Rev. Lett. 110, 184102 (2013).

    Article  Google Scholar 

  23. Pal, V., Tradonsky, C., Chriki, R., Friesem, A. A. & Davidson, N. Observing dissipative topological defects with coupled lasers. Phys. Rev. Lett. 119, 013902 (2017).

    Article  Google Scholar 

  24. Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nat. Photon. 1, 589–594 (2007).

    Article  CAS  Google Scholar 

  25. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1112 (2009).

    Article  CAS  Google Scholar 

  26. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  CAS  Google Scholar 

  27. Khajavikhan, M. et al. Thresholdless nanoscale coaxial lasers. Nature 482, 204–207 (2012).

    Article  CAS  Google Scholar 

  28. Khomskii, D. I. Transition Metal Compounds (Cambridge Univ. Press, 2014).

  29. Feng, J. S. & Xiang, H. J. Anisotropic symmetric exchange as a new mechanism for multiferroicity. Phys. Rev. B 93, 174416 (2016).

    Article  Google Scholar 

  30. Vleck, J. H. V. Recent developments in the theory of antiferromagnetism. J. Phys. Radium 12, 262–274 (1951).

    Article  Google Scholar 

  31. Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).

    Article  CAS  Google Scholar 

  32. Ariaratnam, J. T. & Strogatz, S. H. Phase diagram for the winfree model of coupled nonlinear oscillators. Phys. Rev. Lett. 86, 4278–4281 (2001).

    Article  CAS  Google Scholar 

  33. Soriano, M. C., García-Ojalvo, J., Mirasso, C. R. & Fischer, I. Complex photonics: dynamics and applications of delay-coupled semiconductors lasers. Rev. Mod. Phys. 85, 421–470 (2013).

    Article  CAS  Google Scholar 

  34. Ramos, A., Kottos, T. & Shapiro, B. Optical phase transitions in photonic networks: a spin system formulation. Preprint at https://arxiv.org/abs/1912.10569 (2019).

  35. Hickmann, J. M., Fonseca, E. J. S., Soares, W. C. & Chávez-Cerda, S. Unveiling a truncated optical lattice associated with a triangular aperture using light’s orbital angular momentum. Phys. Rev. Lett. 105, 053904 (2010).

    Article  CAS  Google Scholar 

  36. Inagaki, T. et al. Large-scale Ising spin network based on degenerate optical parametric oscillators. Nat. Photon. 10, 415–419 (2016).

    Article  CAS  Google Scholar 

  37. Moessner, R. & Chalker, J. T. Low-temperature properties of classical geometrically frustrated antiferromagnets. Phys. Rev. B 58, 12049–12062 (1998).

    Article  CAS  Google Scholar 

  38. Zhitomirsky, M. E. Octupolar ordering of classical kagome antiferromagnets in two and three dimensions. Phys. Rev. B 78, 094423 (2008).

    Article  Google Scholar 

  39. Parto, M., Hayenga, W., Marandi, A., Christodoulides, D. N. & Khajavikhan, M. Realizing spin Hamiltonians in nanoscale active photonic lattices. Figshare https://doi.org/10.6084/m9.figshare.11796171 (2020).

  40. Parto, M., Hayenga, W., Marandi, A., Christodoulides, D. N. & Khajavikhan, M. Realizing spin Hamiltonians in nanoscale active photonic lattices. Figshare https://doi.org/10.6084/m9.figshare.11796168 (2020).

Download references

Acknowledgements

We gratefully acknowledge the financial support from DARPA (D18AP00058, HR00111820042, HR00111820038), Army Research Office (ARO; W911NF-16-1-0013, W911NF-17-1-0481, W911NF-18-1-0285), National Science Foundation (ECCS 1454531, DMR 1420620, ECCS 1757025, CBET 1805200, ECCS 2000538, ECCS 2011171, 1846273), Office of Naval Research (N0001416-1-2640, N00014-18-1-2347, N00014-19-1-2052), Air Force Office of Scientific Research (FA9550-14-1-0037) and US–Israel Binational Science Foundation (BSF; 2016381).

Author information

Authors and Affiliations

Authors

Contributions

M.P., D.N.C. and M.K. conceived the idea. M.P. performed the theoretical and analytical modellings. W.H. fabricated the samples and designed the experiments. W.H. and M.P. characterized the samples. M.P., D.N.C., A.M. and M.K. analysed the results. All authors contributed to writing the manuscript. M.K. supervised the project.

Corresponding author

Correspondence to Mercedeh Khajavikhan.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11 and discussion

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parto, M., Hayenga, W., Marandi, A. et al. Realizing spin Hamiltonians in nanoscale active photonic lattices. Nat. Mater. 19, 725–731 (2020). https://doi.org/10.1038/s41563-020-0635-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-0635-6

This article is cited by

Search

Quick links

Nature Briefing AI and Robotics

Sign up for the Nature Briefing: AI and Robotics newsletter — what matters in AI and robotics research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: AI and Robotics