Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks


Biological ion channels have remarkable ion selectivity, permeability and rectification properties, but it is challenging to develop artificial analogues. Here, we report a metal–organic framework-based subnanochannel (MOFSNC) with heterogeneous structure and surface chemistry to achieve these properties. The asymmetrically structured MOFSNC can rapidly conduct K+, Na+ and Li+ in the subnanometre-to-nanometre channel direction, with conductivities up to three orders of magnitude higher than those of Ca2+ and Mg2+, equivalent to a mono/divalent ion selectivity of 103. Moreover, by varying the pH from 3 to 8 the ion selectivity can be tuned further by a factor of 102 to 104. Theoretical simulations indicate that ion–carboxyl interactions substantially reduce the energy barrier for monovalent cations to pass through the MOFSNC, and thus lead to ultrahigh ion selectivity. These findings suggest ways to develop ion selective devices for efficient ion separation, energy reservation and power generation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Fabrication of Asy-MOFSNC using a facilitated interfacial growth strategy, MOF = UiO-66-(COOH)2.
Fig. 2: Rectifying, ultraselective monovalent metal ion transport in Asy-UiO-66-(COOH)2-SNC.
Fig. 3: pH-dependent mono/divalent ion conductance and selectivity in the Asy-UiO-66-(COOH)2-SNC.
Fig. 4: Concentration-dependent ion conductance and selectivity, and binary ion selectivity of the Asy-UiO-66-(COOH)2-SNC.
Fig. 5: Ion sieving mechanism in the UiO-66-(COOH)2-SNC.
Fig. 6: Energy barriers, dehydration effects and ion‒framework interactions of K+ and Mg2+ in the UiO-66-(COOH)2-SNC.

Data availability

All relevant source data within the article and the Supplementary Information are available for download through figshare ( Additional data related to the paper may be requested from the authors.


  1. 1.

    Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).

    CAS  Google Scholar 

  2. 2.

    Blankenburg, S. et al. Porous graphene as an atmospheric nanofilter. Small 6, 2266–2271 (2010).

    CAS  Google Scholar 

  3. 3.

    Cohen-Tanugi, D. & Grossman, J. C. Water desalination across nanoporous graphene. Nano Lett. 12, 3602–3608 (2012).

    CAS  Google Scholar 

  4. 4.

    Sparreboom, W., van den Berg, A. & Eijkel, J. C. Principles and applications of nanofluidic transport. Nat. Nanotechnol. 4, 713–720 (2009).

    CAS  Google Scholar 

  5. 5.

    Feng, J. et al. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197–200 (2016).

    CAS  Google Scholar 

  6. 6.

    Li, R., Fan, X., Liu, Z. & Zhai, J. Smart bioinspired nanochannels and their applications in energy‐conversion systems. Adv. Mater. 29, 1702983 (2017).

    Google Scholar 

  7. 7.

    Catterall, W. A. Structure and function of voltage-sensitive ion channels. Science 242, 50–61 (1988).

    CAS  Google Scholar 

  8. 8.

    MacKinnon, R. Potassium channels and the atomic basis of selective ion conduction (Nobel lecture). Angew. Chem. Int. Ed. 43, 4265–4277 (2004).

    CAS  Google Scholar 

  9. 9.

    Doyle, D. A. et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 280, 69–77 (1998).

    CAS  Google Scholar 

  10. 10.

    Gulbis, J. M., Mann, S. & MacKinnon, R. Structure of a voltage-dependent K+ channel β subunit. Cell 97, 943–952 (1999).

    CAS  Google Scholar 

  11. 11.

    Gouaux, E. & MacKinnon, R. Principles of selective ion transport in channels and pumps. Science 310, 1461–1465 (2005).

    CAS  Google Scholar 

  12. 12.

    Zhou, Y., Morais-Cabral, J. H., Kaufman, A. & MacKinnon, R. Chemistry of ion coordination and hydration revealed by a K+ channel–Fab complex at 2.0 Å resolution. Nature 414, 43–48 (2001).

    CAS  Google Scholar 

  13. 13.

    Roux, B. & MacKinnon, R. The cavity and pore helices in the KcsA K+ channel: electrostatic stabilization of monovalent cations. Science 285, 100–102 (1999).

    CAS  Google Scholar 

  14. 14.

    Nishida, M. & MacKinnon, R. Structural basis of inward rectification: cytoplasmic pore of the G protein-gated inward rectifier GIRK1 at 1.8 Å resolution. Cell 111, 957–965 (2002).

    CAS  Google Scholar 

  15. 15.

    Zhang, H. et al. Bioinspired smart gate-location-controllable single nanochannels: experiment and theoretical simulation. ACS Nano 9, 12264–12273 (2015).

    CAS  Google Scholar 

  16. 16.

    Lepoitevin, M., Ma, T., Bechelany, M., Janot, J.-M. & Balme, S. Functionalization of single solid state nanopores to mimic biological ion channels: A review. Adv. Colloid Interface Sci. 250, 195–213 (2017).

    CAS  Google Scholar 

  17. 17.

    Tagliazucchi, M. & Szleifer, I. Transport mechanisms in nanopores and nanochannels: can we mimic nature? Mater. Today 18, 131–142 (2015).

    CAS  Google Scholar 

  18. 18.

    Amiri, H., Shepard, K. L., Nuckolls, C. & Hernández Sánchez, Rl Single-walled carbon nanotubes: mimics of biological ion channels. Nano Lett. 17, 1204–1211 (2017).

    CAS  Google Scholar 

  19. 19.

    He, Z., Zhou, J., Lu, X. & Corry, B. Bioinspired graphene nanopores with voltage-tunable ion selectivity for Na+ and K+. ACS Nano 7, 10148–10157 (2013).

    CAS  Google Scholar 

  20. 20.

    Wen, Q. et al. Highly selective ionic transport through subnanometer pores in polymer films. Adv. Funct. Mater. 26, 5796–5803 (2016).

    CAS  Google Scholar 

  21. 21.

    Wang, P. et al. Ultrafast ion sieving using nanoporous polymeric membranes. Nat. Commun. 9, 569 (2018).

    CAS  Google Scholar 

  22. 22.

    Joshi, R. et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343, 752–754 (2014).

    CAS  Google Scholar 

  23. 23.

    Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotechnol. 12, 546–550 (2017).

    CAS  Google Scholar 

  24. 24.

    Rollings, R. C., Kuan, A. T. & Golovchenko, J. A. Ion selectivity of graphene nanopores. Nat. Commun. 7, 11408 (2016).

    CAS  Google Scholar 

  25. 25.

    Feng, J. et al. Observation of ionic coulomb blockade in nanopores. Nat. Mater. 15, 850–855 (2016).

    CAS  Google Scholar 

  26. 26.

    Esfandiar, A. et al. Size effect in ion transport through angstrom-scale slits. Science 358, 511–513 (2017).

    CAS  Google Scholar 

  27. 27.

    Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal–organic frameworks. Science 341, 1230444 (2013).

    Google Scholar 

  28. 28.

    Cavka, J. H. et al. A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. J. Am. Chem. Soc. 130, 13850–13851 (2008).

    Google Scholar 

  29. 29.

    Li, J.-R., Sculley, J. & Zhou, H.-C. Metal–organic frameworks for separations. Chem. Rev. 112, 869–932 (2011).

    Google Scholar 

  30. 30.

    Denny, M. S. Jr, Moreton, J. C., Benz, L. & Cohen, S. M. Metal–organic frameworks for membrane-based separations. Nat. Rev. Mater. 1, 1–17 (2016).

    Google Scholar 

  31. 31.

    Rodenas, T. et al. Metal–organic framework nanosheets in polymer composite materials for gas separation. Nat. Mater. 14, 48–55 (2015).

    CAS  Google Scholar 

  32. 32.

    Li, X. et al. Fast and selective fluoride ion conduction in sub-1-nanometer metal–organic framework channels. Nat. Commun. 10, 2490 (2019).

    Google Scholar 

  33. 33.

    Guo, Y., Ying, Y., Mao, Y., Peng, X. & Chen, B. Polystyrene sulfonate threaded through a metal–organic framework membrane for fast and selective lithium-ion separation. Angew. Chem. Int. Ed. 55, 15120–15124 (2016).

    CAS  Google Scholar 

  34. 34.

    Zhang, H. et al. Ultrafast selective transport of alkali metal ions in metal organic frameworks with subnanometer pores. Sci. Adv. 4, eaaq0066 (2018).

    Google Scholar 

  35. 35.

    Guo, W., Tian, Y. & Jiang, L. Asymmetric ion transport through ion-channel-mimetic solid-state nanopores. Acc. Chem. Res. 46, 2834–2846 (2013).

    CAS  Google Scholar 

  36. 36.

    Zhang, H., Tian, Y. & Jiang, L. Fundamental studies and practical applications of bio-inspired smart solid-state nanopores and nanochannels. Nano Today 11, 61–81 (2016).

    CAS  Google Scholar 

  37. 37.

    Wang, J. et al. Oscillatory reaction induced periodic C-quadruplex DNA gating of artificial ion channels. ACS Nano 11, 3022–3029 (2017).

    CAS  Google Scholar 

  38. 38.

    Yang, Q. Y. et al. A water stable metal–organic framework with optimal features for CO2 capture. Angew. Chem. Int. Ed. 52, 10316–10320 (2013).

    CAS  Google Scholar 

  39. 39.

    Ragon, F. et al. Acid-functionalized UiO-66(Zr) MOFs and their evolution after intra-framework cross-linking: structural features and sorption properties. J. Mater. Chem. A 3, 3294–3309 (2015).

    CAS  Google Scholar 

  40. 40.

    Ramírez, P., Apel, P. Y., Cervera, J. & Mafé, S. Pore structure and function of synthetic nanopores with fixed charges: tip shape and rectification properties. Nanotechnology 19, 315707 (2008).

    Google Scholar 

  41. 41.

    Nightingale, E. Jr Phenomenological theory of ion solvation. Effective radii of hydrated ions. J. Phys. Chem. 63, 1381–1387 (1959).

    CAS  Google Scholar 

  42. 42.

    Apel, P. Y., Blonskaya, I. V., Orelovitch, O. L., Ramirez, P. & Sartowska, B. A. Effect of nanopore geometry on ion current rectification. Nanotechnology 22, 175302 (2011).

    Google Scholar 

  43. 43.

    Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017).

    CAS  Google Scholar 

  44. 44.

    Perram, J. W. & Stiles, P. J. On the nature of liquid junction and membrane potentials. Phys. Chem. Chem. Phys. 8, 4200–4213 (2006).

    CAS  Google Scholar 

  45. 45.

    Ramírez, P., Mafe, S., Alcaraz, A. & Cervera, J. Modeling of pH-switchable ion transport and selectivity in nanopore membranes with fixed charges. J. Phys. Chem. B 107, 13178–13187 (2003).

    Google Scholar 

  46. 46.

    Adamson, A. W. A Textbook of Physical Chemistry 2nd edn (Academic Press, 1979).

  47. 47.

    Wu, D. et al. Computational exploration of Zr-carboxylate based metal–organic framework as a membrane material for CO2 capture. J. Mater. Chem. A 2, 1657–1661 (2014).

    CAS  Google Scholar 

  48. 48.

    Mayo, S. L., Olafson, B. D. & Goddard, W. A. DREIDING: a generic force field for molecular simulations. J. Phys. Chem. 94, 8897–8909 (1990).

    CAS  Google Scholar 

  49. 49.

    Rappé, A. K., Casewit, C. J., Colwell, K., Goddard, W. A. III & Skiff, W. M. Uff, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J. Am. Chem. Soc. 114, 10024–10035 (1992).

    Google Scholar 

  50. 50.

    Li, P., Roberts, B. P., Chakravorty, D. K. & Merz, K. M. Jr Rational design of particle mesh Ewald compatible Lennard-Jones parameters for +2 metal cations in explicit solvent. J. Chem. Theory Comput. 9, 2733–2748 (2013).

    CAS  Google Scholar 

  51. 51.

    Li, P., Song, L. F. & Merz, K. M. Jr Systematic parameterization of monovalent ions employing the nonbonded model. J. Chem. Theory Comput. 11, 1645–1657 (2015).

    CAS  Google Scholar 

  52. 52.

    Fiorin, G., Klein, M. L. & Hénin, J. Using collective variables to drive molecular dynamics simulations. Mol. Phys. 111, 3345–3362 (2013).

    CAS  Google Scholar 

Download references


This project is supported by the Australian Research Council (grant nos. DP180100298, DE170100006, DP170102964 and DP180102890). J.L. thanks the Chinese Scholarship Council for a PhD scholarship. J.Z.L. thanks the start-up fund from The University of Melbourne. G.J. thanks the National Natural Science Foundation of China (grant no. 21905215) for support. B.D.F.’s work is supported by the Center for Materials for Water and Energy Systems (M-WET), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award No. DE-SC0019272. We acknowledge assistance from B.Qian and X.Chen in the experiments and use of the facilities and assistance from Y.Chen and X.Fang in the Monash Center for Electron Microscopy. We also acknowledge the assistance of resources and services from the National Computational Infrastructure, which is supported by the Australian Government. We acknowledge the assistance of P. Cook in editing the manuscript.

Author information




H.Z. conceived the project concept. H.Z. and H.W. designed the detailed project scope. H.Z. and J.L. designed the experiments. J.L. and H.Z. performed the sample preparation. J.L. conducted sample measurements and characterizations. G.J. conducted the MD simulations under the guidance of J.Z.L. J.H., X.L., X.H. and Y.H. helped conduct the SEM, PXRD and Zeta potential measurements. C.D.E. carried out the XPS analysis. C.S. and Q.L. did the DFT calculations. J.L. and H.Z. analysed the data and wrote the paper. B.D.F., A.J.H., A.W.T., M.R.H., X.Z., L.J. and H.W. discussed the results and commented on the manuscript. H.Z., J.L., G.J., J.Z.L. and H.W. revised the manuscript. H.Z. and H.W. supervised the work.

Corresponding authors

Correspondence to Huacheng Zhang or Gengping Jiang or Huanting Wang.

Ethics declarations

Competing interests

H.Z., H.W., X.L., J.L., B.D.F. and A.J.H. are inventors on an international patent application related to this work filed by Monash University (application no. PCT/AU2018/051341). All other authors have no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary materials and methods, Notes 1 and 2, Figs. 1–16, Tables 1–7 and refs. 1–56.

Source data

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, J., Zhang, H., Hou, J. et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nat. Mater. 19, 767–774 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing