Nanofluidics coming of age

This is a turning point for nanofluidics. Recent progress allows envisioning both fundamental discoveries for the transport of fluids at the ultimate scales, and disruptive technologies for the water–energy nexus.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Bocquet, L. & Charlaix, E. Chem. Soc. Rev. 9, 1073–1095 (2010).

  2. 2.

    Celebi, K. et al. Science 344, 289–292 (2014).

  3. 3.

    Jain, T. et al. Nat. Nanotechnol. 10, 1053–1057 (2015).

  4. 4.

    Kidambi, P. R. et al. Adv. Mater. 30, 1804977 (2018).

  5. 5.

    Walker, M. I. et al. ACS Nano 11, 1340–1346 (2017).

  6. 6.

    Feng, J. et al. Nature 536, 197–200 (2016).

  7. 7.

    Feng, J. et al. Nat. Mater. 15, 850–855 (2016).

  8. 8.

    Garaj, S. et al. Nature 467, 190–193 (2010).

  9. 9.

    O’Hern, S. C. et al. Nano Lett. 14, 1234–1241 (2014).

  10. 10.

    Lee, C. Y., Choi, W., Han, J. H. & Strano, M. S. Science 329, 1320–1324 (2010).

  11. 11.

    Siria, A. et al. Nature 494, 455–458 (2013).

  12. 12.

    Secchi, E. et al. Nature 537, 210–213 (2016).

  13. 13.

    Yazda, K. et al. Nanoscale 9, 11976–11986 (2017).

  14. 14.

    Liu, L., Yang, C., Zhao, K., Li, J. & Wu, H.-C. Nat. Commun. 4, 2989 (2013).

  15. 15.

    Tunuguntla, R. H. et al. Science 357, 792–796 (2017).

  16. 16.

    Radha, B. et al. Nature 538, 222–225 (2016).

  17. 17.

    Esfandiar, A. et al. Science 358, 511–513 (2017).

  18. 18.

    Faucher, S. et al. J. Phys. Chem. C 123, 21309–21326 (2019).

  19. 19.

    Agrawal, K. V., Shimizu, S., Drahushuk, L. W., Kilcoyne, D. & Strano, M. S. Nat. Nanotechnol. 12, 267–273 (2017).

  20. 20.

    Holt, J. K. et al. Science 312, 1034–1037 (2006).

  21. 21.

    Fumagalli, L. et al. Science 360, 1339–1342 (2018).

  22. 22.

    Rabinowitz, J., Cohen, C. & Shepard, K. L. Nano Lett. https://doi.org/10.1021/acs.nanolett.9b04552 (2019).

  23. 23.

    Siria, A., Bocquet, M.-L. & Bocquet, L. Nat. Rev. Chem. 1, 0091 (2017).

  24. 24.

    Sholl, D. S. & Lively, R. P. Nature 532, 435–437 (2016).

  25. 25.

    Marbach, S. & Bocquet, L. Chem. Soc. Rev. 48, 3102–3144 (2019).

  26. 26.

    Abraham, J. et al. Nat Nanotechnol. 12, 546–550 (2017).

  27. 27.

    Xie, Q. et al. Nat. Nanotechnol. 13, 238–245 (2018).

  28. 28.

    Hu, S. et al. Nat. Nanotechnol. 13, 468–472 (2018).

  29. 29.

    Mouterde, T. et al. Nature 567, 87–90 (2019).

  30. 30.

    Cantley, L. et al. Nanoscale 11, 9856–9861 (2019).

  31. 31.

    Grosjean, B., Bocquet, M.-L. & Vuilleumier, R. Nat. Commun. 10, 1656 (2019).

  32. 32.

    Ghosh, S., Sood, A. K. & Kumar, N. Science 299, 1042–1044 (2003).

  33. 33.

    Barboiu, M. Chem. Commun. 52, 5657–5665 (2016).

  34. 34.

    Xiao, K. et al. Nat. Commun. 10, 74 (2019).

  35. 35.

    Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Science 356, eaab0530 (2017).

  36. 36.

    Wang, L. et al. Nat. Nanotech. 12, 509–522 (2017).

  37. 37.

    Akbari, A. et al. Nat. Commun. 7, 10891 (2016).

  38. 38.

    Hong, S. et al. Nano Lett. 17, 728–732 (2017).

  39. 39.

    Ries, L. et al. Nat. Mater. 18, 1112–1117 (2019).

  40. 40.

    Yang, Y. et al. ACS Nano 12, 4695–4701 (2018).

  41. 41.

    Straub, A. P., Deshmukh, A. & Elimelech, M. Energy Environ. Sci. 9, 31–48 (2016).

  42. 42.

    Lokesh, M., Youn, S. K. & Park, H. G. Nano Lett. 18, 6679–6685 (2018).

  43. 43.

    Graf, M. et al. Joule 3, 1549–1564 (2019).

  44. 44.

    Xin, W. et al. Nat. Commun. 10, 3876 (2019).

  45. 45.

    Comtet, J. et al. Preprint at https://arxiv.org/abs/1906.09019 (2019).

Download references

Author information

Correspondence to Lydéric Bocquet.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020). https://doi.org/10.1038/s41563-020-0625-8

Download citation