Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Comment
  • Published:

Nanofluidics coming of age

This is a turning point for nanofluidics. Recent progress allows envisioning both fundamental discoveries for the transport of fluids at the ultimate scales, and disruptive technologies for the water–energy nexus.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

References

  1. Bocquet, L. & Charlaix, E. Chem. Soc. Rev. 9, 1073–1095 (2010).

    Article  Google Scholar 

  2. Celebi, K. et al. Science 344, 289–292 (2014).

    CAS  Google Scholar 

  3. Jain, T. et al. Nat. Nanotechnol. 10, 1053–1057 (2015).

    CAS  Google Scholar 

  4. Kidambi, P. R. et al. Adv. Mater. 30, 1804977 (2018).

    Google Scholar 

  5. Walker, M. I. et al. ACS Nano 11, 1340–1346 (2017).

    CAS  Google Scholar 

  6. Feng, J. et al. Nature 536, 197–200 (2016).

    CAS  Google Scholar 

  7. Feng, J. et al. Nat. Mater. 15, 850–855 (2016).

    CAS  Google Scholar 

  8. Garaj, S. et al. Nature 467, 190–193 (2010).

    CAS  Google Scholar 

  9. O’Hern, S. C. et al. Nano Lett. 14, 1234–1241 (2014).

    Google Scholar 

  10. Lee, C. Y., Choi, W., Han, J. H. & Strano, M. S. Science 329, 1320–1324 (2010).

    CAS  Google Scholar 

  11. Siria, A. et al. Nature 494, 455–458 (2013).

    CAS  Google Scholar 

  12. Secchi, E. et al. Nature 537, 210–213 (2016).

    CAS  Google Scholar 

  13. Yazda, K. et al. Nanoscale 9, 11976–11986 (2017).

    CAS  Google Scholar 

  14. Liu, L., Yang, C., Zhao, K., Li, J. & Wu, H.-C. Nat. Commun. 4, 2989 (2013).

    Google Scholar 

  15. Tunuguntla, R. H. et al. Science 357, 792–796 (2017).

    CAS  Google Scholar 

  16. Radha, B. et al. Nature 538, 222–225 (2016).

    CAS  Google Scholar 

  17. Esfandiar, A. et al. Science 358, 511–513 (2017).

    CAS  Google Scholar 

  18. Faucher, S. et al. J. Phys. Chem. C 123, 21309–21326 (2019).

    CAS  Google Scholar 

  19. Agrawal, K. V., Shimizu, S., Drahushuk, L. W., Kilcoyne, D. & Strano, M. S. Nat. Nanotechnol. 12, 267–273 (2017).

    CAS  Google Scholar 

  20. Holt, J. K. et al. Science 312, 1034–1037 (2006).

    CAS  Google Scholar 

  21. Fumagalli, L. et al. Science 360, 1339–1342 (2018).

    CAS  Google Scholar 

  22. Rabinowitz, J., Cohen, C. & Shepard, K. L. Nano Lett. https://doi.org/10.1021/acs.nanolett.9b04552 (2019).

    Google Scholar 

  23. Siria, A., Bocquet, M.-L. & Bocquet, L. Nat. Rev. Chem. 1, 0091 (2017).

    CAS  Google Scholar 

  24. Sholl, D. S. & Lively, R. P. Nature 532, 435–437 (2016).

    Google Scholar 

  25. Marbach, S. & Bocquet, L. Chem. Soc. Rev. 48, 3102–3144 (2019).

    CAS  Google Scholar 

  26. Abraham, J. et al. Nat Nanotechnol. 12, 546–550 (2017).

    CAS  Google Scholar 

  27. Xie, Q. et al. Nat. Nanotechnol. 13, 238–245 (2018).

    CAS  Google Scholar 

  28. Hu, S. et al. Nat. Nanotechnol. 13, 468–472 (2018).

    CAS  Google Scholar 

  29. Mouterde, T. et al. Nature 567, 87–90 (2019).

    CAS  Google Scholar 

  30. Cantley, L. et al. Nanoscale 11, 9856–9861 (2019).

    CAS  Google Scholar 

  31. Grosjean, B., Bocquet, M.-L. & Vuilleumier, R. Nat. Commun. 10, 1656 (2019).

    Google Scholar 

  32. Ghosh, S., Sood, A. K. & Kumar, N. Science 299, 1042–1044 (2003).

    CAS  Google Scholar 

  33. Barboiu, M. Chem. Commun. 52, 5657–5665 (2016).

    CAS  Google Scholar 

  34. Xiao, K. et al. Nat. Commun. 10, 74 (2019).

    CAS  Google Scholar 

  35. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Science 356, eaab0530 (2017).

    Google Scholar 

  36. Wang, L. et al. Nat. Nanotech. 12, 509–522 (2017).

    CAS  Google Scholar 

  37. Akbari, A. et al. Nat. Commun. 7, 10891 (2016).

    CAS  Google Scholar 

  38. Hong, S. et al. Nano Lett. 17, 728–732 (2017).

    CAS  Google Scholar 

  39. Ries, L. et al. Nat. Mater. 18, 1112–1117 (2019).

    CAS  Google Scholar 

  40. Yang, Y. et al. ACS Nano 12, 4695–4701 (2018).

    CAS  Google Scholar 

  41. Straub, A. P., Deshmukh, A. & Elimelech, M. Energy Environ. Sci. 9, 31–48 (2016).

    CAS  Google Scholar 

  42. Lokesh, M., Youn, S. K. & Park, H. G. Nano Lett. 18, 6679–6685 (2018).

    CAS  Google Scholar 

  43. Graf, M. et al. Joule 3, 1549–1564 (2019).

    CAS  Google Scholar 

  44. Xin, W. et al. Nat. Commun. 10, 3876 (2019).

    Google Scholar 

  45. Comtet, J. et al. Preprint at https://arxiv.org/abs/1906.09019 (2019).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lydéric Bocquet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bocquet, L. Nanofluidics coming of age. Nat. Mater. 19, 254–256 (2020). https://doi.org/10.1038/s41563-020-0625-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-0625-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing