Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Contact and macroscopic ageing in colloidal suspensions



The ageing behaviour of dense suspensions or pastes at rest is almost exclusively attributed to structural dynamics. Here, we identify another ageing process, contact-controlled ageing, consisting of the progressive stiffening of solid–solid contacts of an arrested colloidal suspension. By combining rheometry, confocal microscopy and particle-scale mechanical tests using laser tweezers, we demonstrate that this process governs the shear-modulus ageing of dense aqueous silica and polymer latex suspensions at moderate ionic strengths. We further show that contact-controlled ageing becomes relevant as soon as Coulombic interactions are sufficiently screened out that the formation of solid–solid contacts is not limited by activation barriers. Given that this condition only requires moderate ion concentrations, contact-controlled ageing should be generic in a wide class of materials, such as cements, soils or three-dimensional inks, thus questioning our understanding of ageing dynamics in these systems.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Mechanical ageing in dense silica suspensions.
Fig. 2: Absence of structural ageing in a water–glycerol mixture.
Fig. 3: Laser-tweezer bending test.
Fig. 4: Matching microscopic and macroscopic data.
Fig. 5: Macroscopic and contact ageing in PMMA suspensions.

Data availability

Figure source data are provided online; other data used in this work are available from the authors.

Code availability

The software used in this work is available from the authors.


  1. 1.

    Abou, B., Bonn, D. & Meunier, J. Aging dynamics in a colloidal glass. Phys. Rev. E. 64, 021510 (2001).

    CAS  Google Scholar 

  2. 2.

    Derec, C., Ducouret, G., Ajdari, A. & Lequeux, F. Aging and nonlinear rheology in suspensions of polyethylene oxide-protected silica particles. Phys. Rev. E. 67, 061403 (2003).

    Google Scholar 

  3. 3.

    Coussot, P., Tabuteau, H., Chateau, X., Tocquer, L. & Ovarlez, G. Aging and solid or liquid behavior in pastes. J. Rheol. 50, 975–994 (2006).

    CAS  Google Scholar 

  4. 4.

    Ovarlez, G. & Coussot, P. Physical age of soft-jammed systems. Phys. Rev. E. 76, 011406 (2007).

    CAS  Google Scholar 

  5. 5.

    Ovarlez, G. & Chateau, X. Influence of shear stress applied during flow stoppage and rest period on the mechanical properties of thixotropic suspensions. Phys. Rev. E. 77, 061403 (2008).

    Google Scholar 

  6. 6.

    Guo, H., Ramakrishnan, S., Harden, J. L. & Leheny, R. L. Gel formation and aging in weakly attractive nanocolloid suspensions at intermediate concentrations. J. Chem. Phys. 135, 154903 (2011).

    Google Scholar 

  7. 7.

    Fusier, J., Goyon, J., Chateau, X. & Toussaint, F. Rheology signature of flocculated silica suspensions. J. Rheol. 62, 753–771 (2018).

    CAS  Google Scholar 

  8. 8.

    Dinsmore, A. D., Weeks, E. R., Prasad, V., Levitt, A. C. & Weitz, D. A. Three-dimensional confocal microscopy of colloids. Appl. Opt. 40, 4152–4159 (2001).

    CAS  Google Scholar 

  9. 9.

    Dinsmore, A. D. & Weitz, D. A. Direct imaging of three-dimensional structure and topology of colloidal gels. J. Phys. Cond. Matter 14, 7581–7597 (2002).

    CAS  Google Scholar 

  10. 10.

    Prasad, V., Semwogerere, D. & Weeks, E. R. Confocal microscopy of colloids. J. Phys. Cond. Matter 19, 113102 (2007).

    Google Scholar 

  11. 11.

    Dibble, C. J., Kogan, M. & Solomon, M. J. Structure and dynamics of colloidal depletion gels: coincidence of transitions and heterogeneity. Phys. Rev. E. 74, 041403 (2006).

    Google Scholar 

  12. 12.

    Whitaker, K. A. et al. Colloidal gel elasticity arises from the packing of locally glassy clusters. Nat. Commun. 10, 2237 (2019).

    Google Scholar 

  13. 13.

    Cipelletti, L., Manley, S., Ball, R. C. & Weitz, D. A. Universal aging features in the restructuring of fractal colloidal gels. Phys. Rev. Lett. 84, 2275–2278 (2000).

    CAS  Google Scholar 

  14. 14.

    Bissig, H., Romer, S., Cipelletti, L., Trappe, V. & Schurtenberger, P. Intermittent dynamics and hyper-aging in dense colloidal gels. Phys. Chem. Comm. 6, 21–23 (2003).

    Google Scholar 

  15. 15.

    Cipelletti, L. et al. Universal non-diffusive slow dynamics in aging soft matter. Faraday Discuss. 123, 237–251 (2003).

    CAS  Google Scholar 

  16. 16.

    Barnes, H. A. Thixotropy: a review. J. Nonnewton. Fluid Mech. 70, 1–33 (1997).

    CAS  Google Scholar 

  17. 17.

    Cipelletti, L. & Ramos, L. Slow dynamics in glassy soft matter. J. Phys. Cond. Matter 17, R253 (2005).

    CAS  Google Scholar 

  18. 18.

    Mewis, J. & Wagner, N. J. Colloidal Suspension Rheology Cambridge Series in Chemical Engineering (Cambridge Univ. Press, 2011).

  19. 19.

    Bouzid, M., Colombo, J., Barbosa, L. V. & Del Gado, E. Elastically driven intermittent microscopic dynamics in soft solids. Nat. Commun. 8, 15846 (2017).

    CAS  Google Scholar 

  20. 20.

    Dieterich, J. H. & Kilgore, B. D. Imaging surface contacts: power law contact distributions and contact stresses in quartz, calcite, glass and acrylic plastic. Tectonophysics 256, 219–239 (1996).

    Google Scholar 

  21. 21.

    Persson, B. N. J. Sliding Friction: Physical Principles and Applications (Springer, 2000).

  22. 22.

    Baumberger, T. & Caroli, C. Solid friction from stick-slip down to pinning and aging. Adv. Phys. 55, 279–348 (2006).

    Google Scholar 

  23. 23.

    Vandamme, M. & Ulm, F.-J. Nanogranular origin of concrete creep. Proc. Natl Acad. Sci. USA 106, 10552–10557 (2009).

    CAS  Google Scholar 

  24. 24.

    Ioannidou, K. et al. The crucial effect of early-stage gelation on the mechanical properties of cement hydrates. Nat. Commun. 7, 12106 (2016).

    CAS  Google Scholar 

  25. 25.

    Roussel, N., Ovarlez, G., Garrault, S. & Brumaud, C. The origins of thixotropy of fresh cement pastes. Cement Concrete Res. 42, 148–157 (2012).

    CAS  Google Scholar 

  26. 26.

    Manley, S. et al. Time-dependent strength of colloidal gels. Phys. Rev. Lett. 95, 048302 (2005).

    CAS  Google Scholar 

  27. 27.

    Pantina, J. P. & Furst, E. M. Elasticity and critical bending moment of model colloidal aggregates. Phys. Rev. Lett. 94, 138301 (2005).

    Google Scholar 

  28. 28.

    Pantina, J. P. & Furst, E. M. Colloidal aggregate micromechanics in the presence of divalent ions. Langmuir 22, 5282–5288 (2006).

    CAS  Google Scholar 

  29. 29.

    Meng, B., Wu, J., Li, Y. & Lou, L. Aging process of the bond between colloidal particles measured using laser tweezers. Colloids Surf. A. 322, 253–255 (2008).

    CAS  Google Scholar 

  30. 30.

    Buscall, R., Mills, P. D. A., Goodwin, J. W. & Lawson, D. W. Scaling behaviour of the rheology of aggregate networks formed from colloidal particles. J. Chem. Soc., Faraday Trans. 84, 4249–4260 (1988).

    CAS  Google Scholar 

  31. 31.

    Russel, W. B., Saville, D. A. & Schowalter, W. R. Colloidal Dispersions Cambridge Monographs on Mechanics (Cambridge Univ. Press, 1989).

  32. 32.

    Israelachvili, J. N. in Intermolecular and Surface Forces 3rd edn (ed. Israelachvili, J. N.) 415–467 (Academic Press, 2011).

  33. 33.

    Swan, J. W., Shindel, M. M. & Furst, E. M. Measuring thermal rupture force distributions from an ensemble of trajectories. Phys. Rev. Lett. 109, 198302 (2012).

    CAS  Google Scholar 

  34. 34.

    Whitaker, K. A. & Furst, E. M. Bond rupture between colloidal particles with a depletion interaction. J. Rheol. 60, 517–529 (2016).

    CAS  Google Scholar 

  35. 35.

    Derjaguin, B., Muller, V. & Toporov, Y. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53, 314–326 (1975).

    CAS  Google Scholar 

  36. 36.

    Johnson, K. L., Kendall, K. & Roberts, A. D. Surface energy and the contact of elastic solids. Proc. R. Soc. London A. 324, 301–313 (1971).

    CAS  Google Scholar 

  37. 37.

    Tabor, D. Surface forces and surface interactions. J. Colloid Interface Sci. 58, 2–13 (1977).

    CAS  Google Scholar 

  38. 38.

    Paul, J., Romeis, S., Tomas, J. & Peukert, W. A review of models for single particle compression and their application to silica microspheres. Adv. Powder Techn. 25, 136–153 (2014).

    CAS  Google Scholar 

  39. 39.

    Iler, K. The Chemistry of Silica: Solubility, Polymerization, Colloid and Surface Properties and Biochemistry of Silica (John Wiley & Sons, Inc., 1979).

  40. 40.

    Guleryuz, H., Røyset, A. K., Kaus, I., Filiàtre, C. & Einarsrud, M.-A. Afm measurements of forces between silica surfaces. J. Sol-Gel Sci. Techn. 62, 460–469 (2012).

    CAS  Google Scholar 

  41. 41.

    Vigil, G., Xu, Z., Steinberg, S. & Israelachvili, J. Interactions of silica surfaces. J. Colloid Interface Sci. 165, 367–385 (1994).

    CAS  Google Scholar 

  42. 42.

    Li, Q., Tullis, T. E., Goldsby, D. & Carpick, R. W. Frictional ageing from interfacial bonding and the origins of rate and state friction. Nature 480, 233 EP (2011).

    Google Scholar 

  43. 43.

    Liu, Y. & Szlufarska, I. Chemical origins of frictional aging. Phys. Rev. Lett. 109, 186102 (2012).

    Google Scholar 

  44. 44.

    Tian, K. et al. Load and time dependence of interfacial chemical bond-induced friction at the nanoscale. Phys. Rev. Lett. 118, 076103 (2017).

    Google Scholar 

  45. 45.

    Li, Z., Pastewka, L. & Szlufarska, I. Chemical aging of large-scale randomly rough frictional contacts. Phys. Rev. E. 98, 023001 (2018).

    CAS  Google Scholar 

  46. 46.

    DelGado, E. & Kob, W. A microscopic model for colloidal gels with directional effective interactions: network induced glassy dynamics. Soft Matter 6, 1547–1558 (2010).

    CAS  Google Scholar 

  47. 47.

    Stober, W., Fink, A. & Bohn, E. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62–69 (1968).

    Google Scholar 

  48. 48.

    Do, K. K. & Taik, K. H. New process for the preparation of monodispersed, spherical silica particles. J. Am. Ceram. Soc. 85, 1107–1113 (2002).

    Google Scholar 

  49. 49.

    Nakabayashi, H. et al. Electrolyte-added one-pot synthesis for producing monodisperse, micrometer-sized silica particles up to 7 μm. Langmuir 26, 7512–7515 (2010).

    CAS  Google Scholar 

  50. 50.

    Laxton, P. B. & Berg, J. C. Investigation of the link between micromechanical interparticle bond rigidity measurements and macroscopic shear moduli of colloidal gels. Colloids Surfaces A. 301, 137–140 (2007).

    CAS  Google Scholar 

  51. 51.

    Crocker, J. C. & Grier, D. G. Methods of digital video microscopy for colloidal studies. J. Colloid Interface Sci. 179, 298–310 (1996).

    CAS  Google Scholar 

  52. 52.

    Gao, Y. X. & Kilfoil, M. L. Accurate detection and complete tracking of large populations of features in three dimensions. Optics Expr. 17, 4685–4704 (2009).

    Google Scholar 

  53. 53.

    Pantina, J. P. & Furst, E. M. Directed assembly and rupture mechanics of colloidal aggregates. Langmuir 20, 3940–3946 (2004).

    CAS  Google Scholar 

  54. 54.

    Shindel, M. M., Swan, J. W. & Furst, E. M. Calibration of an optical tweezer microrheometer by sequential impulse response. Rheologica Acta 52, 455–465 (2013).

    CAS  Google Scholar 

  55. 55.

    Nieminen, T. A., Knöner, G., Heckenberg, N. R. & Rubinsztein-Dunlop, H. in Laser Manipulation of Cells and Tissues, Methods in Cell Biology Vol. 82 (eds Berns, M. W. & Greulich, K. O.) 207–236 (Academic Press, 2007).

Download references


This work benefited from a French government grant managed by ANR within the framework of the National Program Investments for the Future, ANR-11-LABX-0022-01. F.B.’s stay at the University of Delaware was supported by University Paris-Est.

Author information




X.C., J.G. and A.L. conceived and supervised the project. J.G. and J.F. designed the macroscopic shear-modulus ageing protocol and obtained data on silica suspensions. J.G. supervised sample preparation and all experiments. E.M.F. designed the laser tweezer three-point flexural test and supervised its use. F.B. obtained complementary macroscopic shear modulus data, designed the two-compartment cell, performed flexural ageing measurements with E.M.F. and J.G. All authors contributed to the interpretation of experimental data, model construction and article planning and writing.

Corresponding authors

Correspondence to Xavier Chateau or Anaël Lemaître.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Video, Notes 1 and 2, Methods, Figs. 1–5 and References.

Supplementary Video 1

Two videos running in parallel show the contact formation and opening tests at two ionic strengths.

Source data

Source Data Fig. 1

Shear modulus versus ageing time data.

Source Data Fig. 2

Unprocessed confocal images at ageing times t = 1, 5 and 10 min.

Source Data Fig. 3

Source data. Page 1, force versus deflection data at three ageing times and pages 2–4, deduced bond rigidity for three ionic strengths and two rod sizes.

Source Data Fig. 4

Source data. Page 1, shear modulus versus bond rigidity and page 2, S versus packing fraction.

Source Data Fig. 5

Source data. Pages 1–4, bond rigidity versus time. Pages 5 and 6, shear-modulus ageing. Page 7, shear modulus versus bond rigidity.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bonacci, F., Chateau, X., Furst, E.M. et al. Contact and macroscopic ageing in colloidal suspensions. Nat. Mater. 19, 775–780 (2020).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing