Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bandgap tuning of two-dimensional materials by sphere diameter engineering

Abstract

Developing a precise and reproducible bandgap tuning method that enables tailored design of materials is of crucial importance for optoelectronic devices. Towards this end, we report a sphere diameter engineering (SDE) technique to manipulate the bandgap of two-dimensional (2D) materials. A one-to-one correspondence with an ideal linear working curve is established between the bandgap of MoS2 and the sphere diameter in a continuous range as large as 360 meV. Fully uniform bandgap tuning of all the as-grown MoS2 crystals is realized due to the isotropic characteristic of the sphere. More intriguingly, both a decrease and an increase of the bandgap can be achieved by constructing a positive or negative curvature. By fusing individual spheres in the melted state, post-synthesis bandgap adjustment of the supported 2D materials can be realized. This SDE technique, showing good precision, uniformity and reproducibility with high efficiency, may further accelerate the potential applications of 2D materials.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: The generation of lattice deformation in 2D crystals.
Fig. 2: The sphere diameter-determined bandgap tuning effect in the SDE process.
Fig. 3: Uniform bandgap engineering of MoS2 in the SDE process.
Fig. 4: Realization of post-adjustment of the sphere diameter and MoS2 bandgap by designing the assembly of sphere blocks.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code availability

The custom code for the phase field analysis is available from the corresponding authors upon reasonable request.

References

  1. Chhowalla, M. et al. The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat. Chem. 5, 263–275 (2013).

    Google Scholar 

  2. Xu, M., Liang, T., Shi, M. & Chen, H. Graphene-like two-dimensional materials. Chem. Rev. 113, 3766–3798 (2013).

    CAS  Google Scholar 

  3. Xia, F., Wang, H., Xiao, D., Dubey, M. & Ramasubramaniam, A. Two-dimensional material nanophotonics. Nat. Photon. 8, 899–907 (2014).

    CAS  Google Scholar 

  4. Smith, A. M. & Nie, S. Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43, 190–200 (2010).

    CAS  Google Scholar 

  5. Castro Neto, A. H., Guinea, F., Peres, N. M. R., Novoselov, K. S. & Geim, A. K. The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009).

    CAS  Google Scholar 

  6. Feng, J., Qian, X., Huang, C.-W. & Li, J. Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photon. 6, 866–872 (2012).

    CAS  Google Scholar 

  7. Castro, E. V. et al. Biased bilayer graphene: semiconductor with a gap tunable by the electric field effect. Phys. Rev. Lett. 99, 216802 (2007).

    Google Scholar 

  8. Wu, W. et al. Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514, 470–474 (2014).

    CAS  Google Scholar 

  9. Guinea, F., Katsnelson, M. I. & Geim, A. K. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nat. Phys. 6, 30–33 (2009).

    Google Scholar 

  10. Zhu, H. et al. Observation of piezoelectricity in free-standing monolayer MoS2. Nat. Nanotechnol. 10, 151–155 (2015).

    CAS  Google Scholar 

  11. Wang, X. et al. Observation of a giant two-dimensional band-piezoelectric effect on biaxial-strained graphene. NPG Asia Mater. 7, e154 (2015).

    CAS  Google Scholar 

  12. Li, H. et al. Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015).

    CAS  Google Scholar 

  13. Mehboudi, M. et al. Strain and the optoelectronic properties of nonplanar phosphorene monolayers. Proc. Natl Acad. Sci. USA 112, 5888–5892 (2015).

    CAS  Google Scholar 

  14. Lee, J. E., Ahn, G., Shim, J., Lee, Y. S. & Ryu, S. Optical separation of mechanical strain from charge doping in graphene. Nat. Commun. 3, 1024 (2012).

    Google Scholar 

  15. Wei, D. et al. Synthesis of n-doped graphene by chemical vapor deposition and its electrical properties. Nano Lett. 9, 1752–1758 (2009).

    CAS  Google Scholar 

  16. Yavari, F. et al. Tunable bandgap in graphene by the controlled adsorption of water molecules. Small 6, 2535–2538 (2010).

    CAS  Google Scholar 

  17. Ci, L. et al. Atomic layers of hybridized boron nitride and graphene domains. Nat. Mater. 9, 430–435 (2010).

    CAS  Google Scholar 

  18. Feng, Q. et al. Growth of large-area 2D MoS2(1 − x)Se2x semiconductor alloys. Adv. Mater. 26, 2648–2653 (2014).

    CAS  Google Scholar 

  19. Li, H. et al. Growth of alloy MoS2xSe2(1 − x) nanosheets with fully tunable chemical compositions and optical properties. J. Am. Chem. Soc. 136, 3756–3759 (2014).

    CAS  Google Scholar 

  20. Kharche, N. & Nayak, S. K. Quasiparticle band gap engineering of graphene and graphone on hexagonal boron nitride substrate. Nano Lett. 11, 5274–5278 (2011).

    CAS  Google Scholar 

  21. Kośmider, K. & Fernández-Rossier, J. Electronic properties of the MoS2–WS2 heterojunction. Phys. Rev. B 87, 075451 (2013).

    Google Scholar 

  22. Zhang, Y. et al. Direct observation of a widely tunable bandgap in bilayer graphene. Nature 459, 820–823 (2009).

    CAS  Google Scholar 

  23. Levy, N. et al. Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329, 544–547 (2010).

    CAS  Google Scholar 

  24. Liu, Z. et al. Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nat. Commun. 5, 5246 (2014).

    Google Scholar 

  25. Hui, Y. Y. et al. Exceptional tunability of band energy in a compressively strained trilayer MoS2 sheet. ACS Nano 7, 7126–7131 (2013).

    CAS  Google Scholar 

  26. Desai, S. B. et al. Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 14, 4592–4597 (2014).

    CAS  Google Scholar 

  27. Mohiuddin, T. M. G. et al. Uniaxial strain in graphene by Raman spectroscopy: G peak splitting, Grüneisen parameters, and sample orientation. Phys. Rev. B 79, 205433 (2009).

    Google Scholar 

  28. Chaste, J. et al. Intrinsic properties of suspended MoS2 on SiO2/Si pillar arrays for nanomechanics and optics. ACS Nano 12, 3235–3242 (2018).

    CAS  Google Scholar 

  29. Chen, Y. et al. Growing uniform graphene disks and films on molten glass for heating devices and cell culture. Adv. Mater. 27, 7839–7846 (2015).

    CAS  Google Scholar 

  30. Rolinson, R. E. Graphite—the material and some uses in the glass industry. Glass Technol. 30, 153–156 (1989).

    CAS  Google Scholar 

  31. Wiederhorn, S. M. Fracture surface energy of glass. J. Am. Ceram. Soc. 52, 99–105 (1969).

    CAS  Google Scholar 

  32. Conley, H. J. et al. Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626–3630 (2013).

    CAS  Google Scholar 

  33. He, K., Poole, C., Mak, K. F. & Shan, J. Experimental demonstration of continuous electronic structure tuning via strain in atomically thin MoS2. Nano Lett. 13, 2931–2936 (2013).

    CAS  Google Scholar 

  34. Zhu, C. R. et al. Strain tuning of optical emission energy and polarization in monolayer and bilayer MoS2. Phys. Rev. B 88, 121301 (2013).

    Google Scholar 

  35. Hybertsen, M. S. & Louie, S. G. First-principles theory of quasiparticles: calculation of band gaps in semiconductors and insulators. Phys. Rev. Lett. 55, 1418–1421 (1985).

    CAS  Google Scholar 

  36. Godby, R. W., Schluter, M. & Sham, L. J. Self-energy operators and exchange-correlation potentials in semiconductors. Phys. Rev. B 37, 10159–10175 (1988).

    CAS  Google Scholar 

  37. Bradley, R. S. The cohesive force between solid surfaces and the surface energy of solids. Philos. Mag. 13, 853–862 (1932).

    CAS  Google Scholar 

  38. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    CAS  Google Scholar 

  39. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Google Scholar 

  40. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Google Scholar 

  41. Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 035109 (2005).

    Google Scholar 

  42. Enkovaara, J. et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010).

    CAS  Google Scholar 

  43. Hüser, F., Olsen, T. & Thygesen, K. S. Quasiparticle GW calculations for solids, molecules, and two-dimensional materials. Phys. Rev. B 87, 235132 (2013).

    Google Scholar 

  44. Salpeter, E. E. & Bethe, H. A. A relativistic equation for bound-state problems. Phys. Rev. 84, 1232–1242 (1951).

    Google Scholar 

  45. Rasmussen, F. A., Schmidt, P. S., Winther, K. T. & Thygesen, K. S. Efficient many-body calculations for two-dimensional materials using exact limits for the screened potential: band gaps of MoS2, h-BN, and phosphorene. Phys. Rev. B 94, 155406 (2016).

    Google Scholar 

  46. Olsen, T. Designing in-plane heterostructures of quantum spin Hall insulators from first principles: 1T′−MoS2 with adsorbates. Phys. Rev. B 94, 235106 (2016).

    Google Scholar 

  47. Ismail-Beigi, S. Truncation of periodic image interactions for confined systems. Phys. Rev. B 73, 233103 (2006).

    Google Scholar 

  48. Rozzi, C. A., Varsano, D., Marini, A., Gross, E. K. U. & Rubio, A. Exact Coulomb cutoff technique for supercell calculations. Phys. Rev. B 73, 205119 (2006).

    Google Scholar 

Download references

Acknowledgements

The research was supported by the Natural Science Foundation of China (grants 21673161, 21905210 and 21473124), the Sino-German Center for Research Promotion (grant GZ 1400) and the Postdoctoral Innovation Talent Support Program of China (grant BX20180224). This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. We thank H. Xu for PL characterizations. L.F. acknowledges support by Wuhan University President’s Funding.

Author information

Authors and Affiliations

Authors

Contributions

L.F. developed the concept and conceived the experiments. H.Z. contributed to the surface XRD measurement via synchrotron radiation. M.Q.Z. and J.X.L. carried out the main experiments. L.F., M.Q.Z. and J.X.L. wrote the manuscript. M.Q.Z., J.X.L., L. Zhou, R.G.M., Y.Q.D., M.-Y.Z., Z.-H.C., Z.H.C., Z.Z., D.M.Z., T.Y.Y., X.L.L., J.Q.W., L. Zhao, G.X.C., H.J., M.H.R. and H.Z. contributed to data analysis and scientific discussion.

Corresponding authors

Correspondence to Hua Zhou or Lei Fu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary discussions, Figs. 1–29, Table 1 and refs. 1–40.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zeng, M., Liu, J., Zhou, L. et al. Bandgap tuning of two-dimensional materials by sphere diameter engineering. Nat. Mater. 19, 528–533 (2020). https://doi.org/10.1038/s41563-020-0622-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-0622-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing