Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Quantum dynamics of a single molecule magnet on superconducting Pb(111)


Magnetic materials interfaced with superconductors may reveal new physical phenomena with potential for quantum technologies. The use of molecules as magnetic components has already shown great promise, but the diversity of properties offered by the molecular realm remains largely unexplored. Here we investigate a submonolayer of tetrairon(iii) propeller-shaped single molecule magnets deposited on a superconducting lead surface. This material combination reveals a strong influence of the superconductor on the spin dynamics of the single molecule magnet. It is shown that the superconducting transition to the condensate state switches the single molecule magnet from a blocked magnetization state to a resonant quantum tunnelling regime. Our results open perspectives to control single molecule magnetism via superconductors and to use single molecule magnets as local probes of the superconducting state.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Structure of Fe4SMe.
Fig. 2: STM and simulated STM images.
Fig. 3: XMCD and XNLD characterization.
Fig. 4: Magnetic behaviour of Fe4SMe SMMs across the superconducting phase transition.

Data availability

Experimental data used to draw Fig. 3a–d and Fig. 4a are included with the manuscript as source data. Additional data such as STM images, simulated hysteresis curves and DFT results are available from the authors upon request.

Code availability

The code to compute magnetic hysteresis using the kinetic Monte Carlo method is available from the ETH Zurich Data Archive,


  1. 1.

    Linder, J. & Robinson, J. W. A. Superconducting spintronics. Nat. Phys. 11, 307–315 (2015).

    CAS  Google Scholar 

  2. 2.

    Franke, K. J., Schulze, G. & Pascual, J. I. Competition of superconducting phenomena and Kondo screening at the nanoscale. Science 332, 940–944 (2011).

    CAS  Google Scholar 

  3. 3.

    Malavolti, L. et al. Tunable spin–superconductor coupling of spin ½ vanadyl-phthalocyanine molecules. Nano Lett. 18, 7955–7961 (2018).

    CAS  Google Scholar 

  4. 4.

    Heinrich, B. W., Pascual, J. I. & Franke, K. J. Single magnetic adsorbates on s-wave superconductors. Prog. Surf. Sci. 93, 1–19 (2018).

    CAS  Google Scholar 

  5. 5.

    Kezilebieke, S., Dvorak, M., Ojanen, T. & Liljeroth, P. Coupled Yu–Shiba–Rusinov states in molecular dimers on NbSe2. Nano Lett. 18, 2311–2315 (2018).

    CAS  Google Scholar 

  6. 6.

    Farinacci, L. et al. Tuning the coupling of an individual magnetic impurity to a superconductor: quantum phase transition and transport. Phys. Rev. Lett. 121, 196803 (2018).

    CAS  Google Scholar 

  7. 7.

    Heinrich, B. W., Braun, L., Pascual, J. I. & Franke, K. J. Protection of excited spin states by a superconducting energy gap. Nat. Phys. 9, 765–768 (2013).

    CAS  Google Scholar 

  8. 8.

    Gatteschi, D., Sessoli, R. & Villain, J. Molecular Nanomagnets (Oxford Univ. Press, 2006).

  9. 9.

    Sanvito, S. et al. Molecular spintronics. Chem. Soc. Rev. 40, 3336–3355 (2011).

    CAS  Google Scholar 

  10. 10.

    Godfrin, C. et al. Operating quantum states in single magnetic molecules: implementation of Grover’s quantum algorithm. Phys. Rev. Lett. 119, 187702 (2017).

    CAS  Google Scholar 

  11. 11.

    Cornia, A., Mannini, M., Sessoli, R. & Gatteschi, D. Propeller-shaped Fe4 and Fe3M molecular nanomagnets: a journey from crystals to addressable single molecules. Eur. J. Inorg. Chem. 2019, 552–568 (2019).

    CAS  Google Scholar 

  12. 12.

    Mannini, M. et al. Magnetic memory of a single-molecule quantum magnet wired to a gold surface. Nat. Mater. 8, 194–197 (2009).

    CAS  Google Scholar 

  13. 13.

    Mannini, M. et al. Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets. Nature 468, 417–421 (2010).

    CAS  Google Scholar 

  14. 14.

    Malavolti, L. et al. Magnetic bistability in a submonolayer of sublimated Fe4 single-molecule magnets. Nano Lett. 15, 535–541 (2015).

    CAS  Google Scholar 

  15. 15.

    Totaro, P. et al. Tetrairon(iii) single-molecule magnet monolayers on gold: insights from ToF-SIMS and isotopic labeling. Langmuir 30, 8645–8649 (2014).

    CAS  Google Scholar 

  16. 16.

    Margheriti, L. et al. X-ray detected magnetic hysteresis of thermally evaporated terbium double-decker oriented films. Adv. Mater. 22, 5488–5493 (2010).

    CAS  Google Scholar 

  17. 17.

    Serrano, G. et al. Magnetic bistability of TbPc2 submonolayer on a graphene/SiC(0001) conductive electrode. Nanoscale 10, 2715–2720 (2018).

    CAS  Google Scholar 

  18. 18.

    Wäckerlin, C. et al. Giant hysteresis of single-molecule magnets adsorbed on a nonmagnetic insulator. Adv. Mater. 28, 5195–5199 (2016).

    Google Scholar 

  19. 19.

    Studniarek, M. et al. Understanding the superior stability of single‐molecule magnets on an oxide film. Adv. Sci. 6, 1901736 (2019).

    CAS  Google Scholar 

  20. 20.

    Carretta, S. et al. Intra- and inter-multiplet magnetic excitations in a tetrairon(iii) molecular cluster. Phys. Rev. B 70, 214403 (2004).

    Google Scholar 

  21. 21.

    Erler, P. et al. Highly ordered surface self-assembly of Fe4 single molecule magnets. Nano Lett. 15, 4546–4552 (2015).

    CAS  Google Scholar 

  22. 22.

    Gragnaniello, L. et al. Uniaxial 2D superlattice of Fe4 molecular magnets on graphene. Nano Lett. 17, 7177–7182 (2017).

    CAS  Google Scholar 

  23. 23.

    Paschke, F., Erler, P., Enenkel, V., Gragnaniello, L. & Fonin, M. Bulk-like magnetic signature of individual Fe4H molecular magnets on graphene. ACS Nano 13, 780–785 (2019).

    CAS  Google Scholar 

  24. 24.

    Chanin, G. & Torre, J. P. Critical-field curve of superconducting lead. Phys. Rev. B 5, 4357–4364 (1972).

    Google Scholar 

  25. 25.

    Rajaraman, G., Caneschi, A., Gatteschi, D. & Totti, F. A periodic mixed gaussians–plane waves DFT study on simple thiols on Au(111): adsorbate species, surface reconstruction, and thiols functionalization. Phys. Chem. Chem. Phys. 13, 3886–3895 (2011).

    CAS  Google Scholar 

  26. 26.

    Ninova, S. et al. Valence electronic structure of sublimated Fe4 single-molecule magnets: an experimental and theoretical characterization. J. Mater. Chem. C 2, 9599–9608 (2014).

    CAS  Google Scholar 

  27. 27.

    Kappler, J.-P. et al. Ultralow-temperature device dedicated to soft X-ray magnetic circular dichroism experiments. J. Synchrotron Rad. 25, 1727–1735 (2018).

    CAS  Google Scholar 

  28. 28.

    Mannini, M. et al. Spin structure of surface-supported single-molecule magnets from isomorphous replacement and X-ray magnetic circular dichroism. Inorg. Chem. 50, 2911–2917 (2011).

    CAS  Google Scholar 

  29. 29.

    Cornia, A. et al. Energy-barrier enhancement by ligand substitution in tetrairon(iii) single-molecule magnets. Angew. Chem. Int. Ed. 43, 1136–1139 (2004).

    CAS  Google Scholar 

  30. 30.

    Vergnani, L. et al. Magnetic bistability of isolated giant-spin centers in a diamagnetic crystalline matrix. Chem. Eur. J. 18, 3390–3398 (2012).

    CAS  Google Scholar 

  31. 31.

    Kumar, P. et al. Origin and reduction of 1/f magnetic flux noise in superconducting devices. Phys. Rev. Appl. 6, 041001 (2016).

    Google Scholar 

  32. 32.

    Wang, H. et al. Candidate source of flux noise in SQUIDs: adsorbed oxygen molecules. Phys. Rev. Lett. 115, 077002 (2015).

    Google Scholar 

  33. 33.

    Poole, C. P., Farach, H. A., Creswick, R. J. & Prozorov, R. Superconductivity (Elsevier Science, 2014).

  34. 34.

    Prozorov, R. Equilibrium topology of the intermediate state in type-I superconductors of different shapes. Phys. Rev. Lett. 98, 257001 (2007).

    Google Scholar 

  35. 35.

    Prozorov, R., Giannetta, R. W., Polyanskii, A. A. & Perkins, G. K. Topological hysteresis in the intermediate state of type-I superconductors. Phys. Rev. B 72, 212508 (2005).

    Google Scholar 

  36. 36.

    Ruoß, S., Stahl, C., Weigand, M., Schütz, G. & Albrecht, J. High-resolution dichroic imaging of magnetic flux distributions in superconductors with scanning X-ray microscopy. Appl. Phys. Lett. 106, 022601 (2015).

    Google Scholar 

  37. 37.

    Car, P.-E. et al. Giant field dependence of the low temperature relaxation of the magnetization in a dysprosium(iii)–DOTA complex. Chem. Commun. 47, 3751–3753 (2011).

    CAS  Google Scholar 

  38. 38.

    Bozack, M. J. & Bryant, K. W. Elemental lead by XPS. Surf. Sci. Spectra 1, 324–327 (1992).

    CAS  Google Scholar 

  39. 39.

    Nakajima, R., Stöhr, J. & Idzerda, Y. U. Electron-yield saturation effects in L-edge X-ray magnetic circular dichroism spectra of Fe, Co, and Ni. Phys. Rev. B 59, 6421–6429 (1999).

    CAS  Google Scholar 

  40. 40.

    Brouder, C. Angular dependence of X-ray absorption spectra. J. Phys. Condens. Matter 2, 701–738 (1990).

    CAS  Google Scholar 

  41. 41.

    Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. cp2k: atomistic simulations of condensed matter systems. WIRES Comput. Mol. Sci. 4, 15–25 (2014).

    CAS  Google Scholar 

  42. 42.

    Lippert, G., Hutter, J. & Parrinello, M. A hybrid Gaussian and plane wave density functional scheme. Mol. Phys. 92, 477–488 (1997).

    CAS  Google Scholar 

  43. 43.

    Krack, M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor. Chem. Acc. 114, 145–152 (2005).

    CAS  Google Scholar 

  44. 44.

    Zhang, Y. & Yang, W. Comment on “Generalized gradient approximation made simple”. Phys. Rev. Lett. 80, 890–890 (1998).

    CAS  Google Scholar 

  45. 45.

    Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    CAS  Google Scholar 

  46. 46.

    Sabatini, R., Gorni, T. & de Gironcoli, S. Nonlocal van der Waals density functional made simple and efficient. Phys. Rev. B 87, 041108 (2013).

    Google Scholar 

  47. 47.

    Caneschi, A., Gatteschi, D. & Totti, F. Molecular magnets and surfaces: a promising marriage. A DFT insight. Coord. Chem. Rev. 289–290, 357–378 (2015).

    Google Scholar 

  48. 48.

    Bencini, A. & Totti, F. A few comments on the application of density functional theory to the calculation of the magnetic structure of oligo-nuclear transition metal clusters. J. Chem. Theory Comput. 5, 144–154 (2009).

    CAS  Google Scholar 

Download references


We acknowledge SOLEIL for provision of the synchrotron radiation facilities. We thank P. Ohresser, J. P. Kappler and L. Joly for the realization of the ULT-XMCD set-up and for assistance in using the DEIMOS beamline. The European COST Action CA15128 MOLSPIN, the Quantera ERA-NET Co-fund project SUMO and the FET Open Femtoterabyte project are acknowledged for financial support. Italian MIUR, through PRIN project QCNaMoS (2015-HYFSRT) and Progetto Dipartimenti di Eccellenza 2018-2022 (ref. no. B96C1700020008), and Fondazione Ente Cassa di Risparmio di Firenze are also acknowledged for financial support. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation program (ERC-2014-StG-633818-dasQ) and from French LabEx PALM (ANR-10-LABX-0039-PALM)

Author information




G.S., L.P., A.L.S., G.C. and L.M. performed the synchrotron experiments with the assistance of E.O., P.S. and M.M. L.P., G.S., B.C. and A.L.S. prepared and characterized the hybrid interface. M.B. and F.T. performed the DFT studies. F.P. and A.C. prepared and structurally characterized the Fe4SMe SMM. R.S., A.-L.B. and A.C. performed its bulk phase magnetic characterization. A.V. developed the kinetic Monte Carlo method and contributed with G.S. and R.S. to the simulation of the XMCD magnetic data. A.C., S.L., F.T., M.M. and R.S. supervised the activities of the project. All the authors contributed to the discussion and preparation of the manuscript.

Corresponding authors

Correspondence to Giulia Serrano or Roberta Sessoli.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Additional characterization of the Fe4SMe/Pb(111) surface.

(a) Magnification of the STM image of Fe4SMe/Pb(111) in Fig. 2a (main text). Orange and pink lines indicate the molecular easy axis projections on the surface. (b) Scheme of the 12 observed orientations of the easy axis projection with respect to the crystallographic directions of the Pb(111) surface. The projection of the easy axis lies along the main crystallographic directions of Pb(111), orange lines, or at 30° from them, pink lines (only \([\bar 110]\) is shown in the STM image for convenience). (c) Low Energy Electron Diffraction (LEED), 60 eV, of the clean Pb(111) crystal used to identify the main crystallographic directions of the substrate, x axis corresponding to the STM scanning direction.

Extended Data Fig. 2 STM characterization of Fe4SMe superstructures on Pb(111).

Magnification of the STM image of Fe4SMe/Pb(111) in Fig. 2b (main text). Single (1) and double (2) row arrangements of the triangular molecular Fe4SMe superstructures are highlighted.

Extended Data Fig. 3 DFT-computed structure of Fe4SMe/Pb(111).

Top view of three Fe4SMe molecules on Pb(111) calculated by DFT; pink lines indicate the projections of molecular C3 axes. This structure allows to explain the experimental STM topography of Fig. 2c.

Extended Data Fig. 4 Computed DOS and spin density map of Fe4SMe/Pb(111).

(a) TDOS for Fe4SMe/Pb(111) (purple curve), and pDOS contributions from Fe4SMe (blue curve) and Pb(111) surface (red curve). A full width at half-maximum (FWHM) σ=0.45 eV was used. (b) pDOS of atomic contributions in Fe4SMe calculated on Fe4SMe/Pb(111) (σ=0.45 eV). (c) Computed spin density for Fe4SMe on Pb(111). The surfaces are drawn for a value of 0.001 unpaired e bohr-3. Blue and pink colours correspond to spin up and spin down calculated spin densities, respectively. In the inset, arrows depict the arrangement of the spin vectors in the S = 5 ground state using the same colour code. We notice that a similarly negligible spin delocalization was observed for VOPc deposited on Pb with the vanadyl moiety pointing up, but the spin density increased significantly when the molecule was deformed by the STM tip (see Ref. 3). Here, a similar effect appears very unlikely due to the lack of spin density on atoms close to the Pb surface.

Extended Data Fig. 5 XAS and XMCD spectra recorded at θ =45° incidence.

XAS and XMCD signal measured at the Fe L2,3 edges on Fe4SMe/Pb(111) at θ = 45° (B = 3 T, T = 220 mK).

Extended Data Fig. 6 Hysteresis loops in the superconducting window Comparison of hysteresis loops on superconducting and normal substrates.

(a) Enlarged version of Fig. 4a (main text). (b) Magnetic hysteresis loop (grey spheres) of a monolayer of a Fe4 complex on a normal metal (here on a gold substrate, see Ref. 27) in the same field region as panel a. The dark grey solid line is the hysteresis loop simulated disregarding the effect of the superconductor.

Supplementary information

Supplementary Information

Supplementary Notes 1–8, Tables 1 and 2, and Figs. 1–12.

Source data

Source Data Fig. 3

ASCII file of XAS, XMCD and XNLD spectra and ASCII file of XMCD hysteresis loops measured at different temperatures and angles.

Source Data Fig. 4

ASCII file containing the XMCD versus magnetic field data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Serrano, G., Poggini, L., Briganti, M. et al. Quantum dynamics of a single molecule magnet on superconducting Pb(111). Nat. Mater. 19, 546–551 (2020).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing