Cubic ice Ic without stacking defects obtained from ice XVII

Abstract

Amongst the more than 18 different forms of water ice, only the common hexagonal phase and the cubic phase are present in nature on Earth. Nonetheless, it is now widely recognized that all samples of ‘cubic ice’ discovered so far do not have a fully cubic crystal structure but instead are stacking-disordered forms of ice I (namely, ice Isd), which contain both hexagonal and cubic stacking sequences of hydrogen-bonded water molecules. Here, we describe a method to obtain large quantities of cubic ice Ic with high structural purity. Cubic ice Ic is formed by heating a powder of D2O ice XVII obtained from annealing of pristine C0 hydrate samples under dynamic vacuum. Neutron diffraction experiments performed on two different instruments and Raman spectroscopy measurements confirm the structural purity of the cubic ice, Ic. These findings contribute to a better understanding of ice I polymorphism and the existence of the two natural ice forms.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Pictorial representation of the atomic positions of ice Isd.
Fig. 2: Diffraction studies report cubic ice formation.
Fig. 3: Density of ice XVII and ice Ic as a function of temperature.
Fig. 4: Transformation of ice Ic into ice Ih.
Fig. 5: Raman characterization of the transition from ice XVII to ice Ic.

Data availability

The neutron diffraction data that support the findings of this study are available at the DOIs reported in refs. 46,49,50. All other data are available within the article and its supplementary files and from the corresponding authors on reasonable request.

References

  1. 1.

    Hobbs, P. V. Ice Physics (Oxford Univ. Press, 1974).

  2. 2.

    Petrenko, V. F. & Whitworth R. W. Physics of Ice (Oxford Univ. Press, 1999).

  3. 3.

    Salzmann, C. G., Radaelli, P. G., Slater, B. & Finney, J. L. The polymorphism of ice: five unresolved questions. Phys. Chem. Chem. Phys. 13, 18468–18480 (2011).

  4. 4.

    Salzmann, C. G. Advances in the experimental exploration of water’s phase diagram. J. Chem. Phys. 150, 060901 (2019).

  5. 5.

    Bartels-Rausch, T. et al. Ice structures, patterns, and processes: a view across the icefields. Rev. Mod. Phys. 84, 885 (2012).

  6. 6.

    König, H. Eine kubische eismodifikation. Z. Kristallogr. 105, 279–286 (1943).

  7. 7.

    Dowell, L. G. & Rinfret, A. P. Low-temperature forms of ice as studied by X-ray diffraction. Nature 188, 1144–1148 (1960).

  8. 8.

    Bertie, J. E., Calvert, L. D. & Whalley, E. Transformations of ice II, ice III, and ice V at atmospheric pressure. J. Chem. Phys. 38, 840 (1963).

  9. 9.

    Bertie, J. E., Calvert, L. D. & Whalley, E. Transformations of ice VI and ice VII at atmospheric pressure. Can. J. Chem. 42, 1373–1378 (1964).

  10. 10.

    Arnold, G. P., Finch, E. D., Rabideau, S. W. & Wenzel, R. G. Neutron-diffraction study of ice polymorphs. III. Ice Ic. J. Chem. Phys. 49, 4354–4369 (1968).

  11. 11.

    Klotz, S. et al. Metastable ice VII at low temperature and ambient pressure. Nature 398, 681–684 (1999).

  12. 12.

    Murray, B. J., Knopf, D. A. & Bertram, A. K. The formation of cubic ice under conditions relevant to Earth’s atmosphere. Nature 434, 202–205 (2005).

  13. 13.

    Falenty, A. & Kuhs, W. F. Self-preservation of CO2 gas hydrates - surface microstructure and ice perfection. J. Phys. Chem. B 113, 15975–15988 (2009).

  14. 14.

    Falenty, A., Hansen, T. & Kuhs, W. F. in Physics and Chemistry of Ice (ed. Furukawa, Y. et al.) 411– 419 (Hokkaido Univ. Press, 2011).

  15. 15.

    Baker, J. M., Dore, J. C. & Behrens, P. Nucleation of ice in confined geometry. J. Phys. Chem. B 101, 6226–6229 (1997).

  16. 16.

    Kuhs, W. F., Sippel, C., Falenty, A. & Hansen, T. C. Extent and relevance of stacking disorder in ice Ic. Proc. Natl Acad. Sci. USA 109, 21259–21264 (2012).

  17. 17.

    Malkin, T. L., Murray, B. J., Brukhno, A. V., Anwar, J. & Salzmann, C. G. Structure of ice crystallized from supercooled water. Proc. Natl Acad. Sci. USA 109, 1041–1045 (2012).

  18. 18.

    Malkin, T. L. et al. Stacking disorder in ice I. Phys. Chem. Chem. Phys. 17, 60–76 (2015).

  19. 19.

    Whalley, E. Scheiner’s halo: evidence for ice Ic in the atmosphere. Science 211, 389–390 (1981).

  20. 20.

    Murphy, D. M. Dehydration in cold clouds is enhanced by a transition from cubic to hexagonal ice. Geophys. Res. Lett. 30, 2230 (2003).

  21. 21.

    Murray, B. J. et al. Trigonal ice crystals in earth’s atmosphere. Bull. Am. Meteorol. Soc. 94, 169–186 (2015).

  22. 22.

    Gronkowski, P. The search for a cometary outbursts mechanism: a comparison of various theories. Astron. Nachr. Astron. Notes 328, 126–136 (2007).

  23. 23.

    Hansen, T. C., Koza, M. M. & Kuhs, W. F. Formation and annealing of cubic ice: I. modelling of stacking faults. J. Phys. Condens. Matter 20, 285104 (2008).

  24. 24.

    del Rosso, L., Celli, M. & Ulivi, L. A new porous water ice stable at atmospheric pressure obtained by emptying a hydrogen filled ice. Nature Commun. 7, 13394 (2016).

  25. 25.

    del Rosso, L. et al. Refined structure of metastable ice XVII from neutron diffraction measurements. J. Phys. Chem. C 120, 26955–26959 (2016).

  26. 26.

    del Rosso, L. et al. Dynamics of hydrogen guests in ice XVII nanopores. Phys. Rev. Mater. 1, 065602 (2017).

  27. 27.

    Giacovazzo, C. et al. Fundamentals of Crystallography. IUCr Texts on Crystallography (Oxford Univ. Press, 1992).

  28. 28.

    Larson, A. C. & Von Dreele, R. B. General Structure Analysis System (GSAS) Report LAUR 86-748 (Los Alamos National Laboratory, 2004).

  29. 29.

    Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

  30. 30.

    Kuhs, W. F., Bliss, D. & Finney, J. High-resolution neutron powder diffraction study of ice Ic. J. Phys. Colloques 48, 631–636 (1987).

  31. 31.

    Hansen, T. C., Sippel, C. & Kuhs, W. F. Approximations to the full description of stacking disorder in ice I for powder diffraction. Z. Kristallogr. 230, 75–86 (2015).

  32. 32.

    Playford, H. Y., Whale, T. F., Murray, B., Tucker, M. G. & Salzmann, C. G. Analysis of stacking disorder in ice I using pair distribution functions. J. Appl. Crystallogr. 51, 1211–1220 (2018).

  33. 33.

    Amaya, A. J. et al. How cubic can ice be?. J. Chem. Phys. Lett. 8, 3216–3222 (2017).

  34. 34.

    Röttger, K., Endriss, A., Ihringer, J., Doyle, S. & Kuhs, W. F. Lattice constants and thermal expansion of H2O and D2O ice Ih between 10 and 265 K. Acta Crystallogr. B 50, 644–648 (1994).

  35. 35.

    Fortes, A. D. Accurate and precise lattice parameters of H2O and D2O ice Ih between 1.6 and 270 K from high-resolution time-of-flight neutron powder diffraction data. Acta Crystallogr. B 74, 196–216 (2018).

  36. 36.

    Treacy, M. M. J., Newsam, J. M. & Deem, M. W. A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. R. Soc. Lond. A 433, 499–520 (1991).

  37. 37.

    Pimentel, G. C. & Sederholm, C. H. Correlation of infrared stretching frequencies and hydrogen bond distances in crystals. J. Chem. Phys. 24, 639–641 (1956).

  38. 38.

    Pruzan, P. Pressure effects on the hydrogen bond in ice up to 80 GPa. J. Mol. Struct. 322, 279–286 (1994).

  39. 39.

    Vos, W. L., Finger, L. W., Hemley, R. J. & Mao, H. K. Pressure dependence of hydrogen bonding in a novel H2-H2O clathrate. Chem. Phys. Lett. 257, 524–530 (1996).

  40. 40.

    Carr, T. H. G., Shephard, J. J. & Salzmann, C. G. Spectroscopic signature of stacking disorder in ice I. J. Phys. Chem. Lett. 5, 2469–2473 (2014).

  41. 41.

    Komatsu, K. et al. Ice Ic without stacking disorder by evacuating hydrogen from hydrogen hydrate. Nat. Commun. 11, 464 (2020).

  42. 42.

    Handa, Y. P., Klug, D. D. & Whalley, E. Difference in energy between cubic and hexagonal ice. J. Chem. Phys. 84, 7009 (1986).

  43. 43.

    Engel, E. A., Monserrat, B. & Needs, R. J. Anharmonic nuclear motion and the relative stability of hexagonal and cubic ice. Phys. Rev. X 5, 021033 (2015).

  44. 44.

    Raza, Z. et al. Proton ordering in cubic ice and hexagonal ice; a potential new ice phase–XIc. Phys. Chem. Chem. Phys. 13, 19788–19795 (2011).

  45. 45.

    Giannasi, A., Celli, M., Grazzi, F., Ulivi, L. & Zoppi, M. An apparatus for simultaneous thermodynamic and optical measurements with large temperature excursions. Rev. Sci. Instrum. 79, 13105 (2008).

  46. 46.

    Ulivi, L., Grazzi, F., Colognesi, D., del Rosso, L. & Celli, M. Structures of Metastable Water Ice XVII with Different Guests Molecules (STFC ISIS Neutron and Muon Source, 2018); https://doi.org/10.5286/ISIS.E.RB1820334

  47. 47.

    Arnold, O. et al. Mantid–data analysis and visualization package for neutron scattering and μ SR experiments. Nucl. Instrum. Meth. A 764, 156–166 (2014).

  48. 48.

    Catti, M. et al. Ne- and O2-filled ice XVII: a neutron diffraction study. Phys. Chem. Chem. Phys. 21, 14671–14677 (2019).

  49. 49.

    Ulivi, L. et al. Structure of Refilled Metastable Water Ice XVII (Institut Laue-Langevin, 2018); https://doi.org/10.5291/ILL-DATA.5-22-759

  50. 50.

    Ulivi, L. and Hansen, T. C. Transformations of Stacking-pure Ice Ic into Ice Ih (Institut Laue-Langevin, 2019); https://doi.org/10.5291/ILL-DATA.EASY-498

Download references

Acknowledgements

Neutron beam time at ISIS and ILL is gratefully acknowledged, on the basis of the agreement of the CNR (Italy) with STFC (UK) and ILL (France) concerning collaboration in scientific research. L.U. and M.Celli acknowledge the PRIN project ZAPPING, no. 2015HK93L7, granted by the Italian Ministero dell’Istruzione, dell’Università e della Ricerca supporting their research in high-pressure materials science. L.U., M.Celli and L.d.R. acknowledge support from the Fondazione Cassa di Risparmio di Firenze under the contract ICEXVII. ISIS Pressure and Furnaces section and the Electronics section were vital for setting up with gas-handling system and in-situ sample heating for the HRPD experiment. Technical support by A. Donati (IFAC-CNR) for setting up of the high-pressure autoclave for the synthesis of the samples is gratefully acknowledged.

Author information

This work is the result of a common effort to which all authors contributed. In particular, L.d.R. and M.Celli synthesized the samples. M.Celli, L.d.R. and L.U. carried out the Raman experiment. M.Catti, L.d.R., L.U. and T.C.H. carried out the experiment at ILL. L.d.R., F.G. and A.D.F. carried out the experiment at ISIS, RAL. M.Celli and L.U. performed the Raman data analysis. M.Catti, L.d.R., F.G. and A.D.F. performed the diffraction data analysis. L.U., L.d.R. and M.Celli wrote the manuscript. All the authors read and corrected the manuscript.

Correspondence to Leonardo del Rosso or Lorenzo Ulivi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

del Rosso, L., Celli, M., Grazzi, F. et al. Cubic ice Ic without stacking defects obtained from ice XVII. Nat. Mater. (2020). https://doi.org/10.1038/s41563-020-0606-y

Download citation

Further reading