Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Cubic ice Ic without stacking defects obtained from ice XVII

Abstract

Amongst the more than 18 different forms of water ice, only the common hexagonal phase and the cubic phase are present in nature on Earth. Nonetheless, it is now widely recognized that all samples of ‘cubic ice’ discovered so far do not have a fully cubic crystal structure but instead are stacking-disordered forms of ice I (namely, ice Isd), which contain both hexagonal and cubic stacking sequences of hydrogen-bonded water molecules. Here, we describe a method to obtain large quantities of cubic ice Ic with high structural purity. Cubic ice Ic is formed by heating a powder of D2O ice XVII obtained from annealing of pristine C0 hydrate samples under dynamic vacuum. Neutron diffraction experiments performed on two different instruments and Raman spectroscopy measurements confirm the structural purity of the cubic ice, Ic. These findings contribute to a better understanding of ice I polymorphism and the existence of the two natural ice forms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pictorial representation of the atomic positions of ice Isd.
Fig. 2: Diffraction studies report cubic ice formation.
Fig. 3: Density of ice XVII and ice Ic as a function of temperature.
Fig. 4: Transformation of ice Ic into ice Ih.
Fig. 5: Raman characterization of the transition from ice XVII to ice Ic.

Similar content being viewed by others

Data availability

The neutron diffraction data that support the findings of this study are available at the DOIs reported in refs. 46,49,50. All other data are available within the article and its supplementary files and from the corresponding authors on reasonable request.

References

  1. Hobbs, P. V. Ice Physics (Oxford Univ. Press, 1974).

  2. Petrenko, V. F. & Whitworth R. W. Physics of Ice (Oxford Univ. Press, 1999).

  3. Salzmann, C. G., Radaelli, P. G., Slater, B. & Finney, J. L. The polymorphism of ice: five unresolved questions. Phys. Chem. Chem. Phys. 13, 18468–18480 (2011).

    Article  CAS  Google Scholar 

  4. Salzmann, C. G. Advances in the experimental exploration of water’s phase diagram. J. Chem. Phys. 150, 060901 (2019).

    Article  CAS  Google Scholar 

  5. Bartels-Rausch, T. et al. Ice structures, patterns, and processes: a view across the icefields. Rev. Mod. Phys. 84, 885 (2012).

    Article  CAS  Google Scholar 

  6. König, H. Eine kubische eismodifikation. Z. Kristallogr. 105, 279–286 (1943).

    Article  Google Scholar 

  7. Dowell, L. G. & Rinfret, A. P. Low-temperature forms of ice as studied by X-ray diffraction. Nature 188, 1144–1148 (1960).

    Article  CAS  Google Scholar 

  8. Bertie, J. E., Calvert, L. D. & Whalley, E. Transformations of ice II, ice III, and ice V at atmospheric pressure. J. Chem. Phys. 38, 840 (1963).

    Article  CAS  Google Scholar 

  9. Bertie, J. E., Calvert, L. D. & Whalley, E. Transformations of ice VI and ice VII at atmospheric pressure. Can. J. Chem. 42, 1373–1378 (1964).

    Article  CAS  Google Scholar 

  10. Arnold, G. P., Finch, E. D., Rabideau, S. W. & Wenzel, R. G. Neutron-diffraction study of ice polymorphs. III. Ice Ic. J. Chem. Phys. 49, 4354–4369 (1968).

    Article  Google Scholar 

  11. Klotz, S. et al. Metastable ice VII at low temperature and ambient pressure. Nature 398, 681–684 (1999).

    Article  CAS  Google Scholar 

  12. Murray, B. J., Knopf, D. A. & Bertram, A. K. The formation of cubic ice under conditions relevant to Earth’s atmosphere. Nature 434, 202–205 (2005).

    Article  CAS  Google Scholar 

  13. Falenty, A. & Kuhs, W. F. Self-preservation of CO2 gas hydrates - surface microstructure and ice perfection. J. Phys. Chem. B 113, 15975–15988 (2009).

    Article  CAS  Google Scholar 

  14. Falenty, A., Hansen, T. & Kuhs, W. F. in Physics and Chemistry of Ice (ed. Furukawa, Y. et al.) 411– 419 (Hokkaido Univ. Press, 2011).

  15. Baker, J. M., Dore, J. C. & Behrens, P. Nucleation of ice in confined geometry. J. Phys. Chem. B 101, 6226–6229 (1997).

    Article  CAS  Google Scholar 

  16. Kuhs, W. F., Sippel, C., Falenty, A. & Hansen, T. C. Extent and relevance of stacking disorder in ice Ic. Proc. Natl Acad. Sci. USA 109, 21259–21264 (2012).

    Article  CAS  Google Scholar 

  17. Malkin, T. L., Murray, B. J., Brukhno, A. V., Anwar, J. & Salzmann, C. G. Structure of ice crystallized from supercooled water. Proc. Natl Acad. Sci. USA 109, 1041–1045 (2012).

    Article  CAS  Google Scholar 

  18. Malkin, T. L. et al. Stacking disorder in ice I. Phys. Chem. Chem. Phys. 17, 60–76 (2015).

    Article  CAS  Google Scholar 

  19. Whalley, E. Scheiner’s halo: evidence for ice Ic in the atmosphere. Science 211, 389–390 (1981).

    Article  CAS  Google Scholar 

  20. Murphy, D. M. Dehydration in cold clouds is enhanced by a transition from cubic to hexagonal ice. Geophys. Res. Lett. 30, 2230 (2003).

    Article  Google Scholar 

  21. Murray, B. J. et al. Trigonal ice crystals in earth’s atmosphere. Bull. Am. Meteorol. Soc. 94, 169–186 (2015).

    Google Scholar 

  22. Gronkowski, P. The search for a cometary outbursts mechanism: a comparison of various theories. Astron. Nachr. Astron. Notes 328, 126–136 (2007).

    Article  CAS  Google Scholar 

  23. Hansen, T. C., Koza, M. M. & Kuhs, W. F. Formation and annealing of cubic ice: I. modelling of stacking faults. J. Phys. Condens. Matter 20, 285104 (2008).

    Article  CAS  Google Scholar 

  24. del Rosso, L., Celli, M. & Ulivi, L. A new porous water ice stable at atmospheric pressure obtained by emptying a hydrogen filled ice. Nature Commun. 7, 13394 (2016).

    Article  CAS  Google Scholar 

  25. del Rosso, L. et al. Refined structure of metastable ice XVII from neutron diffraction measurements. J. Phys. Chem. C 120, 26955–26959 (2016).

    Article  CAS  Google Scholar 

  26. del Rosso, L. et al. Dynamics of hydrogen guests in ice XVII nanopores. Phys. Rev. Mater. 1, 065602 (2017).

    Article  Google Scholar 

  27. Giacovazzo, C. et al. Fundamentals of Crystallography. IUCr Texts on Crystallography (Oxford Univ. Press, 1992).

  28. Larson, A. C. & Von Dreele, R. B. General Structure Analysis System (GSAS) Report LAUR 86-748 (Los Alamos National Laboratory, 2004).

  29. Rodriguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

    Article  CAS  Google Scholar 

  30. Kuhs, W. F., Bliss, D. & Finney, J. High-resolution neutron powder diffraction study of ice Ic. J. Phys. Colloques 48, 631–636 (1987).

    Google Scholar 

  31. Hansen, T. C., Sippel, C. & Kuhs, W. F. Approximations to the full description of stacking disorder in ice I for powder diffraction. Z. Kristallogr. 230, 75–86 (2015).

    CAS  Google Scholar 

  32. Playford, H. Y., Whale, T. F., Murray, B., Tucker, M. G. & Salzmann, C. G. Analysis of stacking disorder in ice I using pair distribution functions. J. Appl. Crystallogr. 51, 1211–1220 (2018).

    Article  CAS  Google Scholar 

  33. Amaya, A. J. et al. How cubic can ice be?. J. Chem. Phys. Lett. 8, 3216–3222 (2017).

    Article  CAS  Google Scholar 

  34. Röttger, K., Endriss, A., Ihringer, J., Doyle, S. & Kuhs, W. F. Lattice constants and thermal expansion of H2O and D2O ice Ih between 10 and 265 K. Acta Crystallogr. B 50, 644–648 (1994).

    Article  Google Scholar 

  35. Fortes, A. D. Accurate and precise lattice parameters of H2O and D2O ice Ih between 1.6 and 270 K from high-resolution time-of-flight neutron powder diffraction data. Acta Crystallogr. B 74, 196–216 (2018).

    Article  CAS  Google Scholar 

  36. Treacy, M. M. J., Newsam, J. M. & Deem, M. W. A general recursion method for calculating diffracted intensities from crystals containing planar faults. Proc. R. Soc. Lond. A 433, 499–520 (1991).

    Article  Google Scholar 

  37. Pimentel, G. C. & Sederholm, C. H. Correlation of infrared stretching frequencies and hydrogen bond distances in crystals. J. Chem. Phys. 24, 639–641 (1956).

    Article  CAS  Google Scholar 

  38. Pruzan, P. Pressure effects on the hydrogen bond in ice up to 80 GPa. J. Mol. Struct. 322, 279–286 (1994).

    Article  CAS  Google Scholar 

  39. Vos, W. L., Finger, L. W., Hemley, R. J. & Mao, H. K. Pressure dependence of hydrogen bonding in a novel H2-H2O clathrate. Chem. Phys. Lett. 257, 524–530 (1996).

    Article  CAS  Google Scholar 

  40. Carr, T. H. G., Shephard, J. J. & Salzmann, C. G. Spectroscopic signature of stacking disorder in ice I. J. Phys. Chem. Lett. 5, 2469–2473 (2014).

    Article  CAS  Google Scholar 

  41. Komatsu, K. et al. Ice Ic without stacking disorder by evacuating hydrogen from hydrogen hydrate. Nat. Commun. 11, 464 (2020).

  42. Handa, Y. P., Klug, D. D. & Whalley, E. Difference in energy between cubic and hexagonal ice. J. Chem. Phys. 84, 7009 (1986).

    Article  CAS  Google Scholar 

  43. Engel, E. A., Monserrat, B. & Needs, R. J. Anharmonic nuclear motion and the relative stability of hexagonal and cubic ice. Phys. Rev. X 5, 021033 (2015).

    Google Scholar 

  44. Raza, Z. et al. Proton ordering in cubic ice and hexagonal ice; a potential new ice phase–XIc. Phys. Chem. Chem. Phys. 13, 19788–19795 (2011).

    Article  CAS  Google Scholar 

  45. Giannasi, A., Celli, M., Grazzi, F., Ulivi, L. & Zoppi, M. An apparatus for simultaneous thermodynamic and optical measurements with large temperature excursions. Rev. Sci. Instrum. 79, 13105 (2008).

    Article  CAS  Google Scholar 

  46. Ulivi, L., Grazzi, F., Colognesi, D., del Rosso, L. & Celli, M. Structures of Metastable Water Ice XVII with Different Guests Molecules (STFC ISIS Neutron and Muon Source, 2018); https://doi.org/10.5286/ISIS.E.RB1820334

  47. Arnold, O. et al. Mantid–data analysis and visualization package for neutron scattering and μ SR experiments. Nucl. Instrum. Meth. A 764, 156–166 (2014).

    Article  CAS  Google Scholar 

  48. Catti, M. et al. Ne- and O2-filled ice XVII: a neutron diffraction study. Phys. Chem. Chem. Phys. 21, 14671–14677 (2019).

    Article  CAS  Google Scholar 

  49. Ulivi, L. et al. Structure of Refilled Metastable Water Ice XVII (Institut Laue-Langevin, 2018); https://doi.org/10.5291/ILL-DATA.5-22-759

  50. Ulivi, L. and Hansen, T. C. Transformations of Stacking-pure Ice Ic into Ice Ih (Institut Laue-Langevin, 2019); https://doi.org/10.5291/ILL-DATA.EASY-498

Download references

Acknowledgements

Neutron beam time at ISIS and ILL is gratefully acknowledged, on the basis of the agreement of the CNR (Italy) with STFC (UK) and ILL (France) concerning collaboration in scientific research. L.U. and M.Celli acknowledge the PRIN project ZAPPING, no. 2015HK93L7, granted by the Italian Ministero dell’Istruzione, dell’Università e della Ricerca supporting their research in high-pressure materials science. L.U., M.Celli and L.d.R. acknowledge support from the Fondazione Cassa di Risparmio di Firenze under the contract ICEXVII. ISIS Pressure and Furnaces section and the Electronics section were vital for setting up with gas-handling system and in-situ sample heating for the HRPD experiment. Technical support by A. Donati (IFAC-CNR) for setting up of the high-pressure autoclave for the synthesis of the samples is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

This work is the result of a common effort to which all authors contributed. In particular, L.d.R. and M.Celli synthesized the samples. M.Celli, L.d.R. and L.U. carried out the Raman experiment. M.Catti, L.d.R., L.U. and T.C.H. carried out the experiment at ILL. L.d.R., F.G. and A.D.F. carried out the experiment at ISIS, RAL. M.Celli and L.U. performed the Raman data analysis. M.Catti, L.d.R., F.G. and A.D.F. performed the diffraction data analysis. L.U., L.d.R. and M.Celli wrote the manuscript. All the authors read and corrected the manuscript.

Corresponding authors

Correspondence to Leonardo del Rosso or Lorenzo Ulivi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

del Rosso, L., Celli, M., Grazzi, F. et al. Cubic ice Ic without stacking defects obtained from ice XVII. Nat. Mater. 19, 663–668 (2020). https://doi.org/10.1038/s41563-020-0606-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-020-0606-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing