Concurrence of quantum anomalous Hall and topological Hall effects in magnetic topological insulator sandwich heterostructures


The quantum anomalous Hall (QAH) effect is a consequence of non-zero Berry curvature in momentum space. The QAH insulator harbours dissipation-free chiral edge states in the absence of an external magnetic field. However, the topological Hall (TH) effect, a hallmark of chiral spin textures, is a consequence of real-space Berry curvature. Here, by inserting a topological insulator (TI) layer between two magnetic TI layers, we realized the concurrence of the TH effect and the QAH effect through electric-field gating. The TH effect is probed by bulk carriers, whereas the QAH effect is characterized by chiral edge states. The appearance of the TH effect in the QAH insulating regime is a consequence of chiral magnetic domain walls that result from the gate-induced Dzyaloshinskii–Moriya interaction and occurs during the magnetization reversal process in the magnetic TI sandwich samples. The coexistence of chiral edge states and chiral spin textures provides a platform for proof-of-concept dissipationless spin-textured spintronic applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: QAH effect in TI sandwich heterostructures.
Fig. 2: Gate-induced TH effect in TI sandwich heterostructures.
Fig. 3: Concurrence of the QAH and TH effects in TI sandwich heterostructures.
Fig. 4: Chiral domain walls and theoretical interpretations of the appearance of the TH effect.

Data availability

The data that support the findings of this study are available from C.-Z.C. on reasonable request.

Code availability

The code for theoretical calculations of spin susceptibility and DM interaction and simulations of the quantum transport simulation through a single chiral magnetic domain wall from C.L. and J.Zang on reasonable request.


  1. 1.

    Hasan, M. Z. & Kane, C. L. Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010).

  2. 2.

    Qi, X. L. & Zhang, S. C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

  3. 3.

    Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

  4. 4.

    Nagaosa, N., Sinova, J., Onoda, S., MacDonald, A. H. & Ong, N. P. Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010).

  5. 5.

    Haldane, F. D. M. Model for a Quantum Hall effect without Landau levels: condensed-matter realization of the ‘parity anomaly’. Phys. Rev. Lett. 61, 2015–2018 (1988).

  6. 6.

    Liu, C. X., Qi, X. L., Dai, X., Fang, Z. & Zhang, S. C. Quantum anomalous Hall effect in Hg1–yMnyTe quantum wells. Phys. Rev. Lett. 101, 146802 (2008).

  7. 7.

    Qi, X. L., Hughes, T. L. & Zhang, S. C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

  8. 8.

    Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

  9. 9.

    Chang, C. Z. et al. Experimental observation of the quantum anomalous hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

  10. 10.

    Chang, C. Z. et al. High-precision realization of robust quantum anomalous Hall state in a hard ferromagnetic topological insulator. Nat. Mater. 14, 473–477 (2015).

  11. 11.

    Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

  12. 12.

    Kou, X. F. et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014).

  13. 13.

    Mogi, M. et al. Magnetic modulation doping in topological insulators toward higher-temperature quantum anomalous Hall effect. Appl. Phys. Lett. 107, 182401 (2015).

  14. 14.

    Neubauer, A. et al. Topological Hall effect in the A phase of MnSi. Phys. Rev. Lett. 102, 186602 (2009).

  15. 15.

    Lee, M., Kang, W., Onose, Y., Tokura, Y. & Ong, N. P. Unusual Hall effect anomaly in MnSi under pressure. Phys. Rev. Lett. 102, 186601 (2009).

  16. 16.

    Kanazawa, N. et al. Large topological Hall effect in a short-period helimagnet MnGe. Phys. Rev. Lett. 106, 156603 (2011).

  17. 17.

    Huang, S. X. & Chien, C. L. Extended skyrmion phase in epitaxial FeGe(111) thin films. Phys. Rev. Lett. 108, 267201 (2012).

  18. 18.

    Matsuno, J. et al. Interface-driven topological Hall effect in SrRuO3–SrIrO3 bilayer. Sci. Adv. 2, e1600304 (2016).

  19. 19.

    Ohuchi, Y. et al. Electric-field control of anomalous and topological Hall effects in oxide bilayer thin films. Nat. Commun. 9, 213 (2018).

  20. 20.

    Yasuda, K. et al. Geometric Hall effects in topological insulator heterostructures. Nat. Phys. 12, 555–559 (2016).

  21. 21.

    Liu, C. et al. Dimensional crossover-induced topological Hall effect in a magnetic topological insulator. Phys. Rev. Lett. 119, 176809 (2017).

  22. 22.

    Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3. Science 325, 178–181 (2009).

  23. 23.

    Zhang, J. S. et al. Band structure engineering in (Bi1–xSbx)2Te3 ternary topological insulators. Nat. Commun. 2, 574 (2011).

  24. 24.

    Zhu, J. J., Yao, D. X., Zhang, S. C. & Chang, K. Electrically controllable surface magnetism on the surface of topological insulators. Phys. Rev. Lett. 106, 097201 (2011).

  25. 25.

    Ye, F., Ding, G. H., Zhai, H. & Su, Z. B. Spin helix of magnetic impurities in two-dimensional helical metal. Eur. Phys. Lett. 90, 47001 (2010).

  26. 26.

    Xiao, D. et al. Realization of the axion insulator state in quantum anomalous Hall sandwich heterostructures. Phys. Rev. Lett. 120, 056801 (2018).

  27. 27.

    Mogi, M. et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 16, 516–521 (2017).

  28. 28.

    Mogi, M. et al. Tailoring tricolor structure of magnetic topological insulator for robust axion insulator. Sci. Adv. 3, eaao1669 (2017).

  29. 29.

    Zhang, Y. et al. Crossover of the three-dimensional topological insulator Bi2Se3 to the two-dimensional limit. Nat. Phys. 6, 584–588 (2010).

  30. 30.

    Chang, C. Z. et al. Thin films of magnetically doped topological insulator with carrier-independent long-range ferromagnetic order. Adv. Mater. 25, 1065–1070 (2013).

  31. 31.

    Zhang, Z. C. et al. Electrically tuned magnetic order and magnetoresistance in a topological insulator. Nat. Commun. 5, 4915 (2014).

  32. 32.

    Chang, C. Z. et al. Zero-field dissipationless chiral edge transport and the nature of dissipation in the quantum anomalous Hall state. Phys. Rev. Lett. 115, 057206 (2015).

  33. 33.

    Wang, W. B. et al. Direct evidence of ferromagnetism in a quantum anomalous Hall system. Nat. Phys. 14, 791–795 (2018).

  34. 34.

    Jiang, W. J. et al. Skyrmions in magnetic multilayers. Phys. Rep. 704, 1–49 (2017).

  35. 35.

    Hou, W. T., Yu, J. X., Daly, M. & Zang, J. D. Thermally driven topology in chiral magnets. Phys. Rev. B 96, 140403(R) (2017).

  36. 36.

    Bottcher, M., Heinze, S., Egorov, S., Sinova, J. & Dupe, B. BT phase diagram of Pd/Fe/Ir(111) computed with parallel tempering Monte Carlo. N. J. Phys. 20, 103014 (2018).

  37. 37.

    Wang, W. B. et al. Spin chirality fluctuation in two-dimensional ferromagnets with perpendicular magnetic anisotropy. Nat. Mater. 18, 1054–1059 (2019).

  38. 38.

    Liu, C. X. et al. Oscillatory crossover from two-dimensional to three-dimensional topological insulators. Phys. Rev. B 81, 041307 (2010).

  39. 39.

    Li, W. et al. Origin of the low critical observing temperature of the quantum anomalous Hall effect in V-doped (Bi,Sb)2Te3 film. Sci. Rep. 6, 32732 (2016).

  40. 40.

    Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).

  41. 41.

    Groenendijk D. J. et al. Berry phase engineering at oxide interfaces. Preprint at http://arXiv/abs/1810.05619 (2018).

Download references


The authors thank X. D. Xu, B. H. Yan, H. Z. Lu and W. D. Wu for helpful discussions. D.X. and N.S. acknowledge support from an ONR grant (N-000141512370) and Penn State 2DCC-MIP under NSF grant DMR-1539916. J.-H.S. and M.H.W.C. acknowledge the support from NSF grant DMR-1707340. C.L. acknowledges the support from an ONR grant (N00014-15-1-2675 and renewal No. N00014-18-1-2793). D.A. and J.Zang acknowledge the support from DOE grants (DE-SC0016424 and DE-SC0020221). C.-Z.C. acknowledges the support from the Gordon and Betty Moore Foundation’s EPiQS Initiative (Grant GBMF9063) and an ARO Young Investigator Program Award (W911NF1810198). Support for transport measurements and data analysis was provided by DOE grant (DE-SC0019064).

Author information

N.S., M.H.W.C. and C.-Z.C. conceived and designed the experiment. D.X. grew the sandwich heterostructure samples with the help of N.S. and C.-Z.C. F.W., K.W. and J.J. performed characterizations of the samples with the help of C.-Z.C. J.J., F.W., J.-H.S., R.X. and M.K. performed the dilution refrigerator measurements with the help of M.H.W.C. and C.-Z.C. J.J., F.W., Y.-F.Z. and L.Z. carried out the PPMS transport measurement with the help M.H.W.C. and C.-Z.C. D.A., J.Zhang, J. Zang and C. L. provided theoretical support and did all the theoretical calculations. J.J., J.Zang, C.L., N.S., M.H.W.C. and C.-Z.C. analysed the data and wrote the manuscript with contributions from all authors.

Correspondence to Nitin Samarth or Moses H. W. Chan or Cui-Zu Chang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

I. Characterizations of the TI sandwich heterostructure. II. Determining the Curie temperature of the TI sandwich heterostructure. III. Additional transport results of the TI sandwich heterostructure (3-5-3 sample 1). IV. Transport results of the second 3-5-3 TI sandwich heterostructure (3-5-3 sample 2). V. Transport results of TI sandwich heterostructures with different sample configurations. VI. Theoretical calculations for the spin susceptibility in magnetic TI. VII. Simulation of the quantum transport through a single chiral magnetic domain wall in magnetic TI.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, J., Xiao, D., Wang, F. et al. Concurrence of quantum anomalous Hall and topological Hall effects in magnetic topological insulator sandwich heterostructures. Nat. Mater. (2020).

Download citation